Skip to main content

Real-Time Exact Graph Matching with Application in Human Action Recognition

  • Conference paper
Human Behavior Understanding (HBU 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7559))

Included in the following conference series:

Abstract

Graph matching is one of the principal methods to formulate the correspondence between two set of points in computer vision and pattern recognition. However, most formulations are based on the minimization of a difficult energy function which is known to be NP-hard. Traditional methods solve the minimization problem approximately. In this paper, we show that an efficient solution can be obtained by exactly solving an approximated problem instead of approximately solving the original problem. We derive an exact minimization algorithm and successfully apply it to action recognition in videos. In this context, we take advantage of special properties of the time domain, in particular causality and the linear order of time, and propose a novel spatio-temporal graphical structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sivic, J., Zisserman, A.: Video google: a text retrieval approach to object matching in videos. In: ICCV, vol. 2, pp. 1470–1477 (2003)

    Google Scholar 

  2. Borzeshi, E.Z., Piccardi, M., Xu, R.Y.D.: A discriminative prototype selection approach for graph embedding in human action recognition. In: ICCVW (2011)

    Google Scholar 

  3. Liu, J., Ali, S., Shah, M.: Recognizing human actions using multiple features. In: CVPR (2008)

    Google Scholar 

  4. Raja, K., Laptev, I., Prez, P., Oisel, L.: Joint pose estimation and action recognition in image graphs. In: ICIP (2011)

    Google Scholar 

  5. Gaur, U., Zhu, Y., Song, B., Roy-Chowdhury, A.: A string of feature graphs model for recognition of complex activities in natural videos. In: ICCV (2011)

    Google Scholar 

  6. Brendel, W., Todorovic, S.: Learning spatiotemporal graphs of human activities. In: ICPR (2011)

    Google Scholar 

  7. Ta, A.P., Wolf, C., Lavoue, G., Başkurt, A.: Recognizing and localizing individual activities through graph matching. In: AVSS (2010)

    Google Scholar 

  8. Niebles, J.C., Fei-Fei, L.: A hierarchical model of shape and appearance for human action classification. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  9. Savarese, S., Delpozo, A., Niebles, J., Fei-Fei, L.: Spatial-temporal correlatons for unsupervised action classification. In: WMVC, Los Alamitos, CA (2008)

    Google Scholar 

  10. Ryoo, M.S., Aggarwal, J.K.: Spatio-temporal relationship match: video structure comparison for recognition of complex human activities. In: ICCV (2009)

    Google Scholar 

  11. Mikolajczyk, K., Uemura, H.: Action recognition with appearance motion features and fast search trees. CVIU 115(3), 426–438 (2011)

    Google Scholar 

  12. Filipovych, R., Ribeiro, E.: Robust sequence alignment for actor-object interaction recognition: Discovering actor-object states. CVIU 115, 177–193 (2011)

    Google Scholar 

  13. Chen, C., Grauman, K.: Efficient activity detection with max-subgraph search. In: CVPR (2012)

    Google Scholar 

  14. Zhang, L., Zeng, Z., Ji, Q.: Probabilistic image modeling with an extended chain graph for human activity recognition and image segmentation. IEEE Tr. on IP (2011)

    Google Scholar 

  15. Dyana, A., Das, S.: Trajectory representation using gabor features for motion-based video retrieval. Pattern Recognition Letters 30(10), 877–892 (2009)

    Article  Google Scholar 

  16. Cuntoor, N.P., Yegnanarayana, B., Chellappa, R.: Activity modeling using event probability sequences. IEEE Tr. on IP 17(4), 594–607 (2008)

    MathSciNet  Google Scholar 

  17. Abdelkader, M.F., Abd-Almageed, W., Srivastava, A., Chellappa, R.: Silhouette-based Gesture and Action Recognition via Modeling Trajectories on Riemannian shape manifolds. CVIU 115(3), 439–455 (2010)

    Google Scholar 

  18. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. IJPRAI 18(3), 265–298 (2004)

    Google Scholar 

  19. Duchenne, O., Bach, F.R., Kweon, I.-S., Ponce, J.: A tensor-based algorithm for high-order graph matching. In: CVPR, pp. 1980–1987 (2009)

    Google Scholar 

  20. Torresani, L., Kolmogorov, V., Rother, C.: Feature Correspondence Via Graph Matching: Models and Global Optimization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 596–609. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Zampelli, S., Deville, Y., Solnon, C.: Solving subgraph isomorphism problems with constraint programming. Constraints (2009)

    Google Scholar 

  22. Caetano, T.S., Caelli, T., Schuurmans, D., Barone, D.A.C.: Graphical models and point pattern matching. IEEE Tr. on PAMI 28(10), 1646–1663 (2006)

    Article  Google Scholar 

  23. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society B 50, 157–224 (1988)

    MathSciNet  MATH  Google Scholar 

  24. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: ICCV, Washington, DC, USA, pp. 1482–1489 (2005)

    Google Scholar 

  25. Zaslavskiy, M., Bach, F., Vert, J.P.: A path following algorithm for the graph matching problem. IEEE Tr. on PAMI 31(12), 2227–2242 (2009)

    Article  Google Scholar 

  26. Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., Paragios, N.: Dense non-rigid surface registration using high-order graph matching. In: CVPR (2010)

    Google Scholar 

  27. Duchenne, O., Joulin, A., Ponce, J.: A graph-matching kernel for object categorization. In: ICCV (2011)

    Google Scholar 

  28. Lin, L., Zeng, K., Liu, X., Zhu, S.-C.: Layered graph matching by composite cluster sampling with collaborative and competitive interactions. In: CVPR, vol. 0, pp. 1351–1358 (2009)

    Google Scholar 

  29. Leordeanu, M., Zanfir, A., Sminchisescu, C.: Semi-supervised learning and optimization for hypergraph matching. In: ICCV (2011)

    Google Scholar 

  30. Felzenszwalb, P.F., Zabih, R.: Dynamic programming and graph algorithms in computer vision. IEEE Tr. on PAMI 33(4), 721–740 (2011)

    Article  Google Scholar 

  31. Zass, R., Shashua, A.: Probabilistic graph and hypergraph matching. In: CVPR (2008)

    Google Scholar 

  32. Çeliktutan, O., Wolf, C., Sankur, B.: Fast exact matching and correspondence with hyper-graphs on spatio-temporal data. LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université Lumiére Lyon 2/Ecole Centrale de Lyon Report No. RR-LIRIS-2012-002 (2012)

    Google Scholar 

  33. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  34. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: ICPR, pp. 32–36 (2004)

    Google Scholar 

  35. Li, B., Ayazoǧlu, M., Mao, T., Camps, O.I., Sznaier, M.: Activity recognition using dynamic subspace angles. In: CVPR (2011)

    Google Scholar 

  36. Niebles, J.C., Chen, C.-W., Fei-Fei, L.: Modeling Temporal Structure of Decomposable Motion Segments for Activity Classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 392–405. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  37. Pudil, P., Ferri, F.J., Novovicov, J., Kittler, J.: Floating search methods for feature selection with non-monotonic criterion functions. In: ICPR, pp. 279–283 (1994)

    Google Scholar 

  38. Gao, Z., Chen, M.-y., Hauptmann, A.G., Cai, A.: Comparing Evaluation Protocols on the KTH Dataset. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) HBU 2010. LNCS, vol. 6219, pp. 88–100. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Çeliktutan, O., Wolf, C., Sankur, B., Lombardi, E. (2012). Real-Time Exact Graph Matching with Application in Human Action Recognition. In: Salah, A.A., Ruiz-del-Solar, J., Meriçli, Ç., Oudeyer, PY. (eds) Human Behavior Understanding. HBU 2012. Lecture Notes in Computer Science, vol 7559. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34014-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34014-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34013-0

  • Online ISBN: 978-3-642-34014-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics