Skip to main content

Karyotypes, Sex Chromosomes, and Meiotic Division in Spiders

  • Chapter
  • First Online:
Spider Ecophysiology

Abstract

From the cytogenetic point of view, spiders are the best studied arachnid order. In spite of this, karyotype data are still available only for less than 2 % of spider species. These data indicate a considerable diversity of diploid numbers, chromosome morphology, and sex chromosome systems in some spider lineages. Most spiders exhibit a standard chromosome structure except for the superfamily Dysderoidea that has holokinetic chromosomes (a derived type of chromosomes without centromere). The unusual multiple sex chromosomes of spiders have received more attention than any other aspect of their cytogenetics. Most species exhibit the so-called X1X20 system with X1X2 males and X1X1X2X2 females. This sex chromosome determination, considered ancestral for spiders, has an unclear origin. Recently found unusual sex chromosome behaviour at meiosis of female spiders may represent a system acting to restrict pairing and recombination to homologous X chromosomes and support the hypothesis on the origin of multiple X chromosomes by duplications. Despite its evolutionary stability, the X1X20 system has been transformed in some lineages by X–X fusions, by X chromosome duplications, or via sex chromosome–autosome rearrangements. Finally, some spiders also exhibit modifications of meiotic division, e.g. the bipolarisation of prophase I nucleus in males of entelegyne spiders: bivalents form two groups at opposite sides of the nucleus. Prior to formation of the metaphase plate, each bivalent is encased in a double membrane tube, which extends nearly to the spindle poles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amalin DM, Barrion AA, Rueda LM (1992) Morphology and cytology of Argiope catenulata (Doleschall) (Araneae: Araneidae). Asia Life Sci 1:35–44

    Google Scholar 

  • Araújo D, Cella DM, Brescovit AD (2005) Cytogenetic analysis of the neotropical spider Nephilengys cruentata (Araneomorphae, Tetragnathidae): standard staining, NORs, C-bands and base-specific fluorochromes. Braz J Biol 65:193–202

    PubMed  Google Scholar 

  • Barrion AA, Amalin DM, Casal CV (1989) Morphology and cytology of the lynx spider Oxyopes javanus. Philipp J Sci 118:229–237

    Google Scholar 

  • Benavente R, Wettstein R (1977) An ultrastructural cytogenetic study on the evolution of sex chromosomes during the spermatogenesis of Lycosa malitiosa (Arachnida). Chromosoma 64:255–277

    Article  Google Scholar 

  • Benavente R, Wettstein R (1980) Ultrastructural characterization of the sex chromosomes during spermatogenesis of spiders having holocentric chromosomes and a long diffuse stage. Chromosoma 77:69–81

    Article  PubMed  CAS  Google Scholar 

  • Benavente R, Wettstein R, Papa M (1982) Ultrastructural analysis of the X1X2X30 sex chromosome system during the spermatogenesis of Tegenaria domestica (Arachnida). J Cell Sci 58:411–422

    PubMed  CAS  Google Scholar 

  • Bole-Gowda BN (1950) The chromosome study in the spermatogenesis of two lynx-spiders (Oxyopidae). Proc Zool Soc Bengal 3:95–107

    Google Scholar 

  • Bole-Gowda BN (1952) Studies on the chromosomes and sex-determining mechanism in four hunting spiders (Sparassidae). Proc Zool Soc Bengal 5:51–70

    Google Scholar 

  • Chemisquy MA, Rodríguez Gil SG, Scioscia CL, Mola LM (2008) Cytogenetic studies of three Lycosidae species from Argentina (Arachnida, Araneae). Genet Mol Biol 31:857–867

    Article  Google Scholar 

  • Coddington JA, Levi HW (1991) Systematics and evolution of spiders (Araneae). Annu Rev Ecol Syst 22:565–592

    Article  Google Scholar 

  • Cokendolpher JC (1989) Karyotypes of three spider species (Araneae: Pholcidae, Physocyclus). J New York Entomol Soc 97:475–478

    Google Scholar 

  • Datta SN, Chatterjee K (1988) Chromosomes and sex determination in 13 araneid spiders of North-Eastern India. Genetica 76:91–99

    Article  Google Scholar 

  • Diaz MO, Saez FA (1966) Karyotypes of South-American Araneida. Mem Inst Butantan 33:153–154

    Google Scholar 

  • Diaz MO, Maynard R, Brum-Zorrilla N (2010) Diffuse centromere and chromosome polymorphism in haplogyne spiders of the families Dysderidae and Segestriidae. Cytogenet Genome Res 128:131–138

    Article  PubMed  CAS  Google Scholar 

  • Dolejš P, Kořínková T, Musilová J, Opatová V, Kubcová L, Buchar J, Král J (2011) Karyotypes of central European spiders of the genera Arctosa, Tricca, and Xerolycosa (Araneae: Lycosidae). Eur J Entomol 108:1–16

    Google Scholar 

  • Hackman W (1948) Chromosomenstudien an Araneen mit besonderer Berücksichtigung der Geschlechtschromosomen. Acta Zool Fenn 54:1–101

    Google Scholar 

  • Král J (1995) The karyotype studies in central Europe’s species of the superfamilies Amaurobioidea and Dictynoidea (Araneida). In: Růžička V (ed) Proc 15th Eur Coll Arachnol, Inst Entomol, České Budějovice

    Google Scholar 

  • Král J (2007) Evolution of multiple sex chromosomes in the spider genus Malthonica (Araneae: Agelenidae) indicates unique structure of the spider sex chromosome systems. Chromosome Res 15:863–879

    Article  PubMed  Google Scholar 

  • Král J, Musilová J, Šťáhlavský F, Řezáč M, Akan Z, Edwards RL, Coyle FA, Almerje CR (2006) Evolution of the karyotype and sex chromosome systems in basal clades of araneomorph spiders. Chromosome Res 14:859–880

    Article  PubMed  Google Scholar 

  • Král J, Kořínková T, Forman M, Krkavcová L (2011) Insights into the meiotic behavior and evolution of multiple sex chromosome systems in spiders. Cytogenet Genome Res 133:43–66

    Article  PubMed  Google Scholar 

  • Maddison WP (1982) XXXY sex chromosomes in males of the jumping spider genus Pellenes (Araneae: Salticidae). Chromosoma 85:23–37

    Article  Google Scholar 

  • Mittal OP (1966) Karyological studies on the Indian spiders. VI. Chromosome number and sex-determining mechanism in the family Araneidae. Res Bull Panjab Univ 17:335–351

    Google Scholar 

  • Parida BB, Sharma NN (1987) Chromosome number, sex mechanism and genome size in 27 species of Indian spiders. Chromosome Inf Serv 43:11–13

    Google Scholar 

  • Pätau K (1948) X-segregation and heterochromasy in the spider Aranea reaumuri. Heredity 2:77–100

    Article  PubMed  Google Scholar 

  • Penney D, Selden PA (2011) Fossil spiders: the evolutionary history of a mega-diverse order. Siri Scientific Press, Manchester

    Google Scholar 

  • Postiglioni A, Brum-Zorrilla N (1981) Karyological studies on Uruguayan spiders II. Sex chromosomes in spiders of the genus Lycosa (Araneae-Lycosidae). Genetica 56:47–53

    Article  Google Scholar 

  • Revell SH (1947) Controlled X-segregation at meiosis in Tegenaria. Heredity 1:337–347

    Article  Google Scholar 

  • Řezáč M, Král J, Musilová J, Pekár S (2006) Unusual karyotype diversity in the European spiders of the genus Atypus (Araneae: Atypidae). Hereditas 143:123–129

    Article  PubMed  Google Scholar 

  • Řezáč M, Král J, Musilová J, Pekár S (2007) The spider genus Dysdera (Araneae, Dysderidae) in central Europe: revision and natural history. J Arachnol 35:432–462

    Article  Google Scholar 

  • Rodríguez Gil SG, Mola LM, Papeschi AG, Scioscia CL (2002) Cytogenetic heterogeneity in common haplogyne spiders from Argentina (Arachnida: Araneae). J Arachnol 30:47–56

    Article  Google Scholar 

  • Rodríguez Gil SG, Merani MS, Scioscia CL, Mola LM (2007) Cytogenetics in three species of Polybetes Simon 1879 from Argentina (Araneae, Sparassidae) I. Karyotype and chromosome banding pattern. J Arachnol 35:227–237

    Article  Google Scholar 

  • Rowell DM (1985) Complex sex-linked fusion heterozygosity in the Australian huntsman spider Delena cancerides (Araneae: Sparassidae). Chromosoma 93:169–176

    Article  Google Scholar 

  • Sharp HE, Rowell DM (2007) Unprecedented chromosomal diversity and behaviour modify linkage patterns and speciation potential: structural heterozygosity in an Australian spider. J Evol Biol 20:2427–2439

    Article  PubMed  CAS  Google Scholar 

  • Silva D (1988) Estudio cariotípico de Loxosceles laeta (Araneae: Loxoscelidae). Rev Perú Entomol 31:9–12

    Google Scholar 

  • Silva RW, Klisiowicz DR, Cella DM, Mangili OC, Sbalqueiro IJ (2002) Differential distribution of constitutive heterochromatin in two species of brown spider: Loxosceles intermedia and L. laeta (Araneae, Sicariidae), from the metropolitan region of Curitiba, PR (Brazil). Acta Biol Par (Curitiba) 31:123–136

    Google Scholar 

  • Stávale LM, Schneider MC, Araújo D, Brescovit AD, Cella DM (2010) Chromosomes of Theridiidae spiders (Entelegynae): Interspecific karyotype diversity in Argyrodes and diploid number intraspecific variability in Nesticodes rufipes. Genet Mol Biol 33:1–6

    Article  Google Scholar 

  • Stávale LM, Schneider MC, Brescovit AD, Cella DM (2011) Chromosomal characteristics and karyotype evolution of Oxyopidae spiders (Araneae, Entelegynae). Genet Mol Res 10:752–763

    Article  PubMed  Google Scholar 

  • Suzuki S (1954) Cytological studies in spiders. III. Studies on the chromosomes of fifty-seven species of spiders belonging to seventeen families, with general considerations on chromosomal evolution. J Sci Hiroshima Univ, Ser B 15:23–136

    Google Scholar 

  • Viera A, Page J, Rufas JS (2009) Inverted meiosis: the true bugs as a model to study. In: Benavente R, Volf J-N (eds) Genome dynamics V. Meiosis. Karger, Basel

    Google Scholar 

  • Vítková M, Král J, Traut W, Zrzavý J, Marec F (2005) The evolutionary origin of insect telomeric repeats, (TTAGG)n. Chromosome Res 13:145–156

    Article  PubMed  Google Scholar 

  • Wang Y, Song D, Wang X, Yang Z (1993) Preliminary studies on the chromosome of four species of spiders. Acta Arachnol Sinica 2:110–113

    Google Scholar 

  • White MJD (1940) The origin and evolution of multiple sex chromosome mechanisms. J Genet 40:303–336

    Article  Google Scholar 

  • White MJD (1973) Animal cytology and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Wise D (1984) The ultrastructure of an intraspindle membrane system in meiosis of spider spermatocytes. Chromosoma 90:50–56

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to our colleagues M. Forman, I.M. Ávila Herrera, and L. Krkavcová who kindly provided original data, images, and karyotypes of selected species for Figs. 12.1, 12.2, and 12.3. Furthermore, we are very grateful to D. Ubick (California Academy of Sciences, San Francisco) for species determination of Kukulcania. We apologise to the authors whose work was not cited due to the space constraints. This study was supported by the project of the Grant Agency of the Czech Academy of Sciences (project IAA601110808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Král .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kořínková, T., Král, J. (2013). Karyotypes, Sex Chromosomes, and Meiotic Division in Spiders. In: Nentwig, W. (eds) Spider Ecophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33989-9_12

Download citation

Publish with us

Policies and ethics