Skip to main content

Part of the book series: Cognitive Technologies ((COGTECH))

  • 601 Accesses

Abstract

Chapter 4 focuses on the expressive power of binary submodular functions. Known and new classes of submodular functions that are expressible by binary submodular functions are presented. There is a close relationship between the expressive power of binary submodular functions and solving submodular valued constraint satisfaction problems via the minimum cut problem: showing that a class \(\mathcal{C}\) of submodular functions is expressible by binary submodular functions is equivalent to showing that functions from \(\mathcal{C}\) can be minimised efficiently via the minimum cut problem.

An algorithm must be seen to be believed.

Donald Knuth

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, it is known that all Boolean polynomials (of arbitrary degree) are expressible by binary polynomials [34, 247], but the general construction does not preserve submodularity, that is, the resulting binary polynomials are not necessarily submodular.

  2. 2.

    Note that this result is not obvious because simply changing the infinite cost to some big, but finite constant M does not work: for c 1<c 2, ∞+c 1≥∞+c 2, but M+c 1<M+c 2. For instance, consider the submodular cost function ϕ defined as follows: ϕ(0,0)=ϕ(1,0)=∞, ϕ(0,1)=1, and ϕ(1,1)=2. Changing ϕ(0,0)=ϕ(1,0)=M for any finite number M would violate the submodularity condition.

  3. 3.

    In [59], 2-monotone cost functions are defined over lattice-ordered sets and called generalised 2-monotone cost functions. In [191], these are called just 2-monotone cost functions.

  4. 4.

    Most papers on pseudo-Boolean optimisation deal with the maximisation problem, and therefore talk about supermodular functions, rather than submodular functions. However, the maximisation problem of supermodular functions is equivalent to the minimisation problem of submodular functions.

References

  1. Balinksi, M.: On a selection problem. Manag. Sci. 17(3), 230–231 (1970)

    Article  Google Scholar 

  2. Billionet, A., Minoux, M.: Maximizing a supermodular pseudo-Boolean function: a polynomial algorithm for cubic functions. Discrete Appl. Math. 12(1), 1–11 (1985)

    Article  MathSciNet  Google Scholar 

  3. Boros, E., Hammer, P.L.: Pseudo-Boolean optimization. Discrete Appl. Math. 123(1–3), 155–225 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burkard, R., Klinz, B., Rudolf, R.: Perspectives of Monge properties in optimization. Discrete Appl. Math. 70(2), 95–161 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohen, D., Cooper, M., Jeavons, P., Krokhin, A.: A maximal tractable class of soft constraints. J. Artif. Intell. Res. 22, 1–22 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Cohen, D., Cooper, M., Jeavons, P., Krokhin, A.: Supermodular functions and the complexity of MAX-CSP. Discrete Appl. Math. 149(1–3), 53–72 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, D.A., Cooper, M.C., Jeavons, P.G., Krokhin, A.A.: The complexity of soft constraint satisfaction. Artif. Intell. 170(11), 983–1016 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Crama, Y.: Recognition problems for special classes of polynomials in 0–1 variables. Math. Program. 44(1–3), 139–155 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Crama, Y., Hammer, P.L.: Boolean Functions—Theory, Algorithms, and Applications. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  10. Creignou, N., Khanna, S., Sudan, M.: Complexity Classification of Boolean Constraint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and Applications, vol. 7. SIAM, Philadelphia (2001)

    Book  Google Scholar 

  11. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. In: Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07), pp. 461–471. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  12. Gallo, G., Simeone, B.: On the supermodular knapsack problem. Math. Program. 45(1–3), 295–309 (1988)

    MathSciNet  Google Scholar 

  13. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum flow problem. J. ACM 35(4), 921–940 (1988)

    MathSciNet  MATH  Google Scholar 

  14. Hammer, P.L.: Some network flow problems solved with pseudo-Boolean programming. Oper. Res. 13(3), 388–399 (1965)

    Article  MathSciNet  Google Scholar 

  15. Jeavons, P., Cohen, D., Cooper, M.C.: Constraints, consistency and closure. Artif. Intell. 101(1–2), 251–265 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kohli, P., Ladický, L., Torr, P.: Robust higher order potentials for enforcing label consistency. Int. J. Comput. Vis. 82(3), 302–324 (2009)

    Article  Google Scholar 

  17. Krokhin, A., Larose, B.: Maximizing supermodular functions on product lattices, with application to maximum constraint satisfaction. SIAM J. Discrete Math. 22(1), 312–328 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of approximations for maximizing submodular set functions—I. Math. Program. 14(1), 265–294 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function minimization. Math. Program. 118(2), 237–251 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Picard, J.C., Queyranne, M.: A network flow solution to some nonlinear 0–1 programming programs, with applications to graph theory. Networks 12(2), 141–159 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Picard, J.C., Ratliff, H.: Minimum cuts and related problems. Networks 5(4), 357–370 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Promislow, S., Young, V.: Supermodular functions on finite lattices. Order 22(4), 389–413 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Queyranne, M.: Minimising symmetric submodular functions. Math. Program. 82(1–2), 3–12 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Ramalingam, S., Kohli, P., Alahari, K., Torr, P.: Exact inference in multi-label CRFs with higher order cliques. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’08). IEEE Computer Society, Los Alamitos (2008)

    Google Scholar 

  25. Rhys, J.: A selection problem of shared fixed costs and network flows. Manag. Sci. 17(3), 200–207 (1970)

    Article  MATH  Google Scholar 

  26. Rosenberg, I.: Reduction of bivalent maximization to the quadratic case. Cah. Cent. étud. Rech. Opér. 17, 71–74 (1975)

    MATH  Google Scholar 

  27. Schlesinger, D.: Exact solution of permuted submodular MinSum problems. In: Proceedings of the 6th International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR’07). Lecture Notes in Computer Science, vol. 4679, pp. 28–38. Springer, Berlin (2007)

    Chapter  Google Scholar 

  28. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003)

    MATH  Google Scholar 

  29. Simeone, B., de Werra, D., Cochand, M.: Recognition of a class of unimodular functions. Discrete Appl. Math. 29(2–3), 243–250 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zalesky, B.: Efficient determination of Gibbs estimators with submodular energy functions (2008). arXiv:math/0304041v1

  31. Živný, S., Jeavons, P.G.: Classes of submodular constraints expressible by graph cuts. Constraints 15(3), 430–452 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Živný, S. (2012). Expressibility of Submodular Languages. In: The Complexity of Valued Constraint Satisfaction Problems. Cognitive Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33974-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33974-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33973-8

  • Online ISBN: 978-3-642-33974-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics