Skip to main content

On a Geometrically Exact Theory for Contact Interactions

  • Chapter
Recent Advances in Contact Mechanics

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 56))

  • 1705 Accesses

Abstract

The focus of the contribution is on the development of the unified geometrical formulation of contact algorithms in a covariant form for various geometrical situations of contacting bodies leading to contact pairs: surface-to-surface, line-to-surface, point-to-surface, line-to-line, point-to-line, point-to-point. The computational contact algorithm will be considered in accordance with the geometry of contact bodies in a covariant form. This combination forms a geometrically exact theory of contact interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alart, P., Heege, A.: Consistent tangent matrices of curved contact operators involving anisotropic friction. Revue Europeenne des Elements Finis 4, 183–207 (1995)

    MathSciNet  MATH  Google Scholar 

  2. Gurtin, M.E., Weissmueller, J., Larche, F.: A general theory of curved deformable interfaces in solids at equilibrium. Philosophical Magazine A 78, 1093–1109 (1998)

    Article  Google Scholar 

  3. Harnau, M., Konyukhov, A., Schweizerhof, K.: Algorithmic aspects in large deformation contact analysis using ’Solid-Shell’ elements. Computers and Structures 83, 1804–1823 (2005)

    Article  Google Scholar 

  4. Heegaard, J.H., Curnier, A.: Geometric properties of 2D and 3D unilateral large slip contact operators. Computer Methods in Applied Mechanics and Engineering 131, 263–286 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Heege, A., Alart, P.: A frictional contact element for strongly curved contact problems. International Journal for Numerical Methods in Engineering 39, 165–184 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jones, R.E., Papadopoulos, P.: A geometric interpretation of frictional contact mechanics. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 57(6), 1025–1041 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Konyukhov, A., Schweizerhof, K.: Contact formulation via a velocity description allowing efficiency improvements in frictionless contact analysis. Computational Mechanics 33, 165–173 (2004)

    Article  MATH  Google Scholar 

  8. Konyukhov, A., Schweizerhof, K.: Covariant description for frictional contact problems. Computational Mechanics 35, 190–213 (2005)

    Article  MATH  Google Scholar 

  9. Konyukhov, A., Schweizerhof, K.: Covariant description of contact interfaces considering anisotropy for adhesion and friction: Part 1. formulation and analysis of the computational model. Computer Methods in Applied Mechanics and Engineering 196, 103–117 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Konyukhov, A., Schweizerhof, K.: Covariant description of contact interfaces considering anisotropy for adhesion and friction: Part 2. linearization, finite element implementation and numerical analysis of the model. Computer Methods in Applied Mechanics and Engineering 196, 289–303 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Konyukhov, A., Schweizerhof, K.: A special focus on 2d formulations for contact problems using a covariant description. International Journal for Numerical Methods in Engineering 66, 1432–1465 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Konyukhov, A., Schweizerhof, K.: Symmetrization of various friction models based on an augmented lagrangian approach. In: IUTAM Bookseries, pp. 97–111. Springer (2007)

    Google Scholar 

  13. Konyukhov, A., Schweizerhof, K.: On the solvability of closest point projection procedures in contact analysis: Analysis and solution strategy for surfaces of arbitrary geometry. Computer Methods in Applied Mechanics and Engineering 197(33-40), 3045–3056 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Konyukhov, A., Schweizerhof, K.: Geometrically exact covariant approach for contact between curves representing beam and cable type structures pp. 00–56 (2009) (submitted)

    Google Scholar 

  15. Konyukhov, A., Schweizerhof, K.: Incorporation of contact for high-order finite elements in covariant form. Computer Methods in Applied Mechanics and Engineering 198, 1213–1223 (2007/2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Konyukhov, A., Vielsack, P., Schweizerhof, K.: On coupled models of anisotropic contact surfaces and their experimental validation. Wear 264(7-8), 579–588 (2008)

    Article  Google Scholar 

  17. Krstulovic-Opara, L., Wriggers, P., Korelc, J.: A C1-continuous formulation for 3d finite deformation frictional contact. Computational Mechanics 29, 27–42 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Krstulovic-Opara, L., Wriggers, P., Korelc, J.: Convected description in large deformation frictional contact problems. International Journal of Solids and Structures 31, 669–681 (1994)

    Article  MathSciNet  Google Scholar 

  19. Laursen, T.A., Simo, J.C.: A continuum-based finite element formulation for the implicit solution of multibody large deformation frictional contact problems. International Journal for Numerical Methods in Engineering 35, 3451–3485 (1993)

    Article  MathSciNet  Google Scholar 

  20. Litewka, P.: Hermite polynomial smoothing in beam-to-beam frictional contact. Computational Mechanics 40, 815–826 (2007)

    Article  MATH  Google Scholar 

  21. Litewka, P., Wriggers, P.: Contact between 3D beams with rectangular cross-sections. International Journal for Numerical Methods in Engineering 53, 2019–2042 (2002)

    Article  MATH  Google Scholar 

  22. Litewka, P., Wriggers, P.: Frictional contact between 3D beams. Computational Mechanics 28, 26–39 (2002)

    Article  MATH  Google Scholar 

  23. Montmitonnet, P., Hasquin, A.: Implementation of an anisotropic friction law in a 3d finite element model of hot rolling. In: Shen, S.-F., Dowson, P. (eds.) Proc. of NUMIFORM 1995, pp. 301–306 (1995)

    Google Scholar 

  24. Parisch, H.: A consistent tangent stiffness matrix for three-dimensional nonlinear contact analysis. International Journal for Numerical Methods in Engineering 28, 1803–1812 (1989)

    Article  MATH  Google Scholar 

  25. Parisch, H., Luebbing, C.: A formulation of arbitrarily shaped surface elements for three-dimensional large deformation contact with friction. International Journal for Numerical Methods in Engineering 40, 3359–3383 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Peric, D., Owen, D.R.J.: Computational model for 3-d contact problems with friction based on the penalty method. International Journal for Numerical Methods in Engineering 35, 1289–1309 (1992)

    Article  MATH  Google Scholar 

  27. Simo, J.C., Laursen, T.A.: An Augmented Lagrangian treatment of contact problems involving friction. Computers and Structures 42, 97–116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Simo, J.C., Wriggers, P., Schweizerhof, K., Taylor, R.L.: Finite deformation post-buckling analysis involving inelasticity and contact constraints. International Journal for Numerical Methods in Engineering 23, 779–800 (1986)

    Article  MATH  Google Scholar 

  29. Stadler, M., Holzapfel, G.A., Korelc, J.: Cn continuous modeling of smooth contact surfaces using nurbs and application to 2d problems. International Journal for Numerical Methods in Engineering 57, 2177–2203 (2003)

    Article  MATH  Google Scholar 

  30. Wriggers, P., Simo, J.C.: A note on tangent stiffness for fully nonlinear contact problems. Communications in Applied Numerical Methods 1, 199–203 (1985)

    Article  MATH  Google Scholar 

  31. Wriggers, P., Vu Van, Stein, E.: Finite element formulation of large deformation impact-contact problem with friction. Computers and Structures 37, 319–331 (1990)

    Article  MATH  Google Scholar 

  32. Wriggers, P., Zavarise, G.: On contact between three-dimensional beams undergoing large deflection. Communications in Numerical Methods in Engineering 13, 429–438 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zavarise, G., Wriggers, P.: Contact with friction between beams in 3-d space. International Journal for Numerical Methods in Engineering 49, 977–1006 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Konyukhov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Konyukhov, A., Schweizerhof, K. (2013). On a Geometrically Exact Theory for Contact Interactions. In: Stavroulakis, G. (eds) Recent Advances in Contact Mechanics. Lecture Notes in Applied and Computational Mechanics, vol 56. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33968-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33968-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33967-7

  • Online ISBN: 978-3-642-33968-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics