Skip to main content

Relationship Between Surface Morphology and Effective Medium Roughness

  • Chapter
  • First Online:
Ellipsometry at the Nanoscale

Abstract

The modeling of surface and interface roughness is a key issue in the interpretation of ellipsometric measurements. Materials properties are often extracted from ellipsometry measurements in an indirect way by modeling the optical response of the material. Since roughness is known to affect the scattering of light on an interface, how roughness is incorporated into these models can affect the outcome of the fitting procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.E. Aspnes, J.P. Harbison, A.A. Studna, L.T. Florez, Application of reflectance difference spectroscopy to molecular-beam epitaxy growth of gaas and alas. J. Vac. Sci. Technol. A 6, 1327 (1988)

    Google Scholar 

  2. D.E. Aspnes, Optical response of microscopically rough surfaces. Phys. Rev. B 41, 10334 (1990)

    Article  Google Scholar 

  3. D.E. Aspnes, J.B. Theeten, F. Hottier, Investigation of effective-medium models of microscopic roughness by spectroscopic ellipsometry. Phys. Rev. B 20, 3292 (1979)

    Article  Google Scholar 

  4. R.G. Barrera, M. Delcastillomussot, G. Monsivais, P. Villasenor, W.L. Mochan, Phys. Rev. B 43, 13819 (1991)

    Article  Google Scholar 

  5. D. Beaglehole, O. Hunderi, Study of the interaction of light with rough metal surfaces i experiment. Phys. Rev. B 2, 309 (1970)

    Article  Google Scholar 

  6. D.A.G. Bruggeman, Ann. Physik 24, 636 (1935)

    Article  Google Scholar 

  7. A.L Barabási, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  8. F. Everts, H. Wormeester, B. Poelsema, Optical anisotropy induced by ion bombardment of ag(001). Phys. Rev. B 78, 155419 (2008)

    Article  Google Scholar 

  9. F. Everts, H. Wormeester, B. Poelsema, Anomalous anisotropy in athermal bradley-harper roughening of cu(001). Phys. Rev. B 82, 081415(R) (2010)

    Google Scholar 

  10. S.J. Fang, W. Chen, T. Yamanaka, C.R. Helms, Comparison of si surface roughness measured by atomic force microscopy and ellipsometry. Appl. Phys. Lett. 68(20), 2837–2839 (1996)

    Article  Google Scholar 

  11. H. Fujiwara, M. Kondo, A. Matsuda, Real-time spectroscopic ellipsometry studies of the nucleation and grain growth processes in microcrystalline silicon thin films. Phys. Rev. B 63, 115306 (2001)

    Article  Google Scholar 

  12. H. Fujiwara, J. Koh, P.I. Rovira, R.W. Collins, Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films. Phys. Rev. B 61, 10832–10844 (2000)

    Google Scholar 

  13. D. Franta, I. Ohlidal, Ellipsometric parameters and reflectances of thin films with slightly rough boundaries. J. Mod. Opt. 45(5), 903–934 (1998)

    Google Scholar 

  14. D. Franta, I. Ohlidal, Comparison of effective medium approximation and rayleighrice theory concerning ellipsometric characterization of rough surfaces. Opt. Commun. 248(4–6), 459–467 (2005)

    Google Scholar 

  15. H. Fujiwara, Spectroscopic Ellipsometry (Wiley, Chichester, 2007)

    Google Scholar 

  16. J.H. Jeffries, J.K. Zuo, M.M. Craig, Instability of kinetic roughening in sputter-deposition growth of pt on glass. Phys. Rev. Lett. 76(26), 4931–4934 (1996)

    Article  Google Scholar 

  17. R.P.U. Karunasiri, R. Bruinsma, J. Rudnick, Thin-film growth and the shadow instability. Phys. Rev. Lett. 62(7), 788–791 (1989)

    Google Scholar 

  18. E. Kretschmann, E. Kröger, Reflection and transmission of light by a rough surface, including results for surface-plasmon effects. J. Opt. Soc. Am. 65, 150–154 (1975)

    Google Scholar 

  19. W. Kaspar, U. Kreibig, Surface structure influences on the absorptance of thick silver films. Surf. Sci. 69, 619 (1977)

    Article  Google Scholar 

  20. E.S. Kooij, H. Wormeester, E.A.M. Brouwer, E. van Vroonhoven, A. van Silfhout, B. Poelsema, Langmuir 18, 4401 (2002)

    Article  Google Scholar 

  21. N. Kumar, A. Yanguas-Gil, S.R. Daly, G.S. Girolami, J.R. Abelson, Remote plasma treatment of si surfaces: enhanced nucleation in low-temperature chemical vapor deposition. Appl. Phys. Lett. 95(14), 144107 (2009)

    Article  Google Scholar 

  22. T. Lopez-Rios, Y. Borensztein, G. Vuye, Roughening of ag surfaces by ag deposits studied by differential reflectivity. Phys. Rev. B 30, 659 (1984)

    Article  Google Scholar 

  23. J.C. Maxwell Garnett, Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Lond. 203A, 385 (1904)

    Google Scholar 

  24. S.G. Mayr, M. Moske, K. Samwer, Identification of key parameters by comparing experimental and simulated growth of vapor-deposited amorphous Zr(65)Al(7.5)Cu(27.5) films. Phys. Rev. B 60(24), 16950–16955 (1999)

    Google Scholar 

  25. F. Ojeda, R. Cuerno, R. Salvarezza, L. Vazquez, Dynamics of rough interfaces in chemical vapor deposition: experiments and a model for silica films. Phys. Rev. Lett. 84(14), 3125–3128 (2000)

    Article  Google Scholar 

  26. George Palasantzas, Static and dynamic aspects of the rms local slope of growing random surfaces. Phys. Rev. E 56, 1254–1257 (1997)

    Article  Google Scholar 

  27. P. Petrik, L.P. Bir, M Fried, T. Lohner, R. Berger, C. Schneider, J. Gyulai, H. Ryssel, Comparative study of surface roughness measured on polysilicon using spectroscopic ellipsometry and atomic force microscopy. Thin Solid Films 315(1–2), 186–191 (1998)

    Google Scholar 

  28. M. Pelliccione, T.-M. Lu, Mounded surfaces. In: Evolution of Thin Film Morphology, Springer Series in Materials Science, vol. 108 (Springer, New York, 2008), pp. 47–58

    Google Scholar 

  29. P. Petrik, T. Lohner, M. Fried, L.P. Biro, N.Q. Khanh, J. Gyulai, W. Lehnert, C. Schneider, H. Ryssel, Ellipsometric study of polycrystalline silicon films prepared by low-pressure chemical vapor deposition. J. Appl. Phys. 87(4), 1734–1742 (2000)

    Article  Google Scholar 

  30. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, vol. 111 (Springer, Berlin, 1988)

    Google Scholar 

  31. Brent A. Sperling, John R. Abelson, Simultaneous short-range smoothening and global roughening during growth of hydrogenated amorphous silicon films. Appl. Phys. Lett. 85(16), 3456–3458 (2004)

    Article  Google Scholar 

  32. B.A. Sperling, J.R. Abelson, Kinetic roughening of amorphous silicon during hot-wire chemical vapor deposition at low temperature. J. Appl. Phys. 101, 024915 (2007)

    Article  Google Scholar 

  33. A.H.M. Smets, W.M.M. Kessels, M.C.M. van de Sanden, Temperature dependence of the surface roughness evolution during hydrogenated amorphous silicon film growth. Appl. Phys. Lett. 82(6), 865–867 (2003)

    Article  Google Scholar 

  34. H. Wormeester, F. Everts, B. Poelsema, Plasmon resonance shift during grazing incidence ion sputtering on Ag(001). Thin Solid Films 519, 2664 (2011)

    Article  Google Scholar 

  35. A. Yanguas-Gil, J. Cotrino, A. Barranco, A.R. Gonzalez-Elipe, Influence of the angular distribution function of incident particles on the microstructure and anomalous scaling behavior of thin films. Phys. Rev. Lett. 96(23), 236101 (2006)

    Article  Google Scholar 

  36. A. Yanguas-Gil, J. Cotrino, A. Walkiewicz-Pietrzykowska, A.R. Gonzalez-Elipe, Scaling behavior and mechanism of formation of SiO\(_2\) thin films grown by plasma-enhanced chemical vapor deposition. Phys. Rev. B 76(7), 075314 (2007)

    Article  Google Scholar 

  37. A. Yanguas-Gil, B.A. Sperling, J.R. Abelson, Theory of light scattering from self-affine surfaces: relationship between surface morphology and effective medium roughness. Phys. Rev. B 84, 085402 (2011)

    Article  Google Scholar 

  38. J.-T. Zettler, K. Haberland, M. Zorn, M. Pristovsek, W. Richter, P. Kurpas, M. Weyers, Real-time monitoring of movpe device growth by reflectance anisotropy spectroscopy and related optical techniques. J. Cryst. Growth 195, 151–162 (1998)

    Article  Google Scholar 

  39. Y. Zhao, G.-C. Wang, T.-M. Lu, Characterization of Amorphous and Crystalline Rough Surface: Principles and Applications, Experimental Methods in Physical Sciences, vol. 37 (Academic Press, New York, 2001)

    Google Scholar 

Download references

Acknowledgments

AYG wishes to acknowledge Dr. Jeffrey W. Elam from Argonne National Laboratory for financial support through the Argonne-Northwestern Solar Energy Research (ANSER) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Grant No. DE-SC0001059. Argonne is a U.S. Department of Energy Office of Science Laboratory, and is operated under Grant No. DE-AC02-06CH11357 by UChicago Argonne, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Yanguas-Gil .

Editor information

Editors and Affiliations

A. Terms of the Rayleigh-Rice Theory

A. Terms of the Rayleigh-Rice Theory

Following the notation used in Ref. [14], the kernel functions in the Rayleigh-Rice theory are given by:

$$\begin{aligned} f_p(q_x, q_y)&= A_p +(b-c) \frac{B_{31p}q^2+B_{62p}(q_y^2 + bc)}{q^2+bc} \nonumber \\&\quad + q_x\frac{B_{61p}\left[q^2(b-c)^2+(q^2+bc)^2\right]-B_{32p}}{q^2+bc} \end{aligned}$$
(4.45)
$$\begin{aligned} f_s(q_x, q_y)&= A_s + B_{5s}\frac{(b-c)(q_x^2-bc)}{q^2+bc} \end{aligned}$$
(4.46)

where:

$$\begin{aligned} b&= \sqrt{n_0^2k_0^2-q^2} \end{aligned}$$
(4.47)
$$\begin{aligned} c&= \sqrt{n_1^2k_0^2-q^2} \end{aligned}$$
(4.48)

and

$$\begin{aligned} A_p&= k_0^2n_0n_1^2X/D \end{aligned}$$
(4.49)
$$\begin{aligned} B_{31p}&= k_0n_0^2n_1^2\sin \theta _0 W/D \end{aligned}$$
(4.50)
$$\begin{aligned} B_{62p}&= k_0n_0n_1\cos \theta _1 X/D \end{aligned}$$
(4.51)
$$\begin{aligned} B_{61p}&= n_0n_1\cos \theta _1 W/(Dk_0) \end{aligned}$$
(4.52)
$$\begin{aligned} B_{32p}&= k_0^3n_0^2n_1^2\sin \theta _0 X/D \end{aligned}$$
(4.53)
$$\begin{aligned} A_s&= -2k_0^2n_0n_1\cos \theta _0\cos \theta _1r_s \end{aligned}$$
(4.54)
$$\begin{aligned} B_{5s}&= -2k_0n_0\cos \theta _0 r_s \end{aligned}$$
(4.55)

with:

$$\begin{aligned} D&= (n_0\cos \theta _0+n_1\cos \theta _1)(n_0^2\sin ^2\theta _0+n_0n_1\cos \theta _0\cos \theta _1)\end{aligned}$$
(4.56)
$$\begin{aligned} X&= (n_0^2-n_1^2)\cos \theta _1t_p \end{aligned}$$
(4.57)
$$\begin{aligned} W&= (n_1/n_0^2-1/n_1)n_0 \sin \theta _0t_p \end{aligned}$$
(4.58)

Here, \(\theta _0\) is the incidence angle, \(k_0\) is the light wavenumber, \(n_0\) and \(n_1\) are the air and the material complex refractive index, and \(r_s\), \(r_p\), \(t_p\), \(t_s\) are the Fresnel reflection and transmission coefficients for the flat interface.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yanguas-Gil, A., Wormeester, H. (2013). Relationship Between Surface Morphology and Effective Medium Roughness. In: Losurdo, M., Hingerl, K. (eds) Ellipsometry at the Nanoscale. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33956-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33956-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33955-4

  • Online ISBN: 978-3-642-33956-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics