Skip to main content

Real-Time Ellipsometry for Probing Charge-Transfer Processes at the Nanoscale

  • Chapter
  • First Online:
Ellipsometry at the Nanoscale

Abstract

Nanoscale charge transfer is important to both the frontier of fundamental science and to applications in molecular electronics, photonic, electronic, optical, imaging, catalysis, sensing devices, photovoltaics, and energy savings and storage. For many of those applications, plasmonic metal nanoparticles are with molecules and/or semiconductors, where nanoparticles act as an electron-bridge. Metal nanoparticles experience charge transfer either by a hopping mechanism involving transient charging of the nanoparticle and/or by electron storage and delocalization among/in the nanoparticles. This electron transfer affects the electron density in the metal, and the plasmon resonance, and therefore, can be detected spectroscopically. This chapter discusses examples of exploitation of spectroscopic ellipsometry as a real time research tool that advance description and understanding of charge transfer phenomena involving (i) chemisorption of metals on semiconductor surfaces, (ii) growth of plasmonic nanoparticles on polar semiconductors, (iii) coupling plasmonic nanoparticles to graphene, and (iv) charge transfer between plasmonic nanoparticles and biomolecules, activating sensing processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Chen, R.S. Ingram, M.J. Hostetler, J.J. Pietron, R.W. Murray, T.G. Schaaff, J.T. Khoury, M.M. Alvarez, R.L. Whetten, Science 280, 2098 (1998)

    Google Scholar 

  2. A.C. Templeton, W.P. Wuelfing, R.W. Murray, Acc. Chem. Res. 33, 27 (2000)

    Google Scholar 

  3. D.M. Adams, J. Phys. Chem. B 107, 6668 (2003)

    Google Scholar 

  4. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New york, 2007)

    Google Scholar 

  5. S.C. Warren, D.A. Walker, B.A. Grzybowski, Langmuir 28, 9093 (2012)

    Google Scholar 

  6. A. Takai, P.V. Kamat, ACS Nano 5, 7369 (2011)

    Google Scholar 

  7. H.A. Atwater, A. Polman, Nat. Mater. 9, 205 (2010)

    Google Scholar 

  8. A. Wood, M. Giersig, P. Mulvaney, J. Phys. Chem. B 105, 8810 (2001)

    Google Scholar 

  9. M. Jakob, H. Levanon, P.V. Kamat, Nano Lett. 3, 353 (2003)

    Google Scholar 

  10. V. Subramanian, E.E. Wolf, P.V. Kamat, J. Am. Chem. Soc. 126, 4943 (2004)

    Google Scholar 

  11. A. Wood, M. Giersig, P. Mulvaney, J. Phys. Chem. B 105, 8810 (2001)

    Google Scholar 

  12. T. Hirakawa, P. V. Kamat, Langmuir 20, 5645 (2004)

    Google Scholar 

  13. R.W. Murray, Chem. Rev. 108, 2688 (2008)

    Google Scholar 

  14. J.B. Asbury, E. Hao, Y. Wang, H.N. Shosh, T. Lian, J. Phys. Chem. B 105, 4545 (2001)

    Google Scholar 

  15. F.J. Adrian, J. Chem., Phys. 77, 5302 (1982)

    Google Scholar 

  16. K.G. Thomas, P.V. Kamat, Acc. Chem. Res. 36, 888 (2003)

    Google Scholar 

  17. P.V. Kamat, S. Barazzouk, S. Hotchandani, Angew. Chem., Int. Ed. 41, 2764 (2002)

    Google Scholar 

  18. D. E. Aspnes, Phys. Stat. Sol. (b) 242, 2551 (2005)

    Google Scholar 

  19. R.W. Collins, I. An, J. Lee, J.A. Zapien, Multichannel ellipsometry, in Handbook of Ellipsometry, ed. by H.G. Tompkins, E.A. Irene (Springer, Heidelberg, 2005)

    Google Scholar 

  20. J.A. Zapien, R.W. Collins, R. Messier, Rev. Sci. Instrum. 71, 3451 (2000)

    Google Scholar 

  21. D. Daineka, D. Kouznetsov, P. Bulkin, G. Girard, J.-E. Bour’ee, B. Drevillon, Eur. Phys. J. Appl. Phys. 28, 343–346 (2004)

    Google Scholar 

  22. J. Lee, P.I. Rovira, I. An, R.W. Collins, Rev. Sci. Instrum. 69, 1800 (1998)

    Google Scholar 

  23. C. Chen et al., Appl. Surf. Sci. 253, 38–46 (2006)

    Google Scholar 

  24. E. Garcia-Caurel, A. De Martino, B. Drévillon, Thin Solid Films 455–456, 120 (2004)

    Google Scholar 

  25. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Harcourt College Publisher, Philadelfia, 1976), pp. 1–20

    Google Scholar 

  26. C. Novo, A.M. Funston, A.K. Gooding, P. Mulvaney, J. Am. Chem. Soc. 131, 14664 (2009)

    Google Scholar 

  27. A. Henglein, P. Mulvaney, T. Linnert, Faraday Discuss. 92, 31 (1991)

    Google Scholar 

  28. R. Chapman, P. Mulvaney, Chem. Phys. Lett. 249, 358 (2001)

    Google Scholar 

  29. N.I. Zheludev, Contemp. Phys. 43, 365 (2002)

    Google Scholar 

  30. O. Hunderi, R. J. Ryberg, Phys. F Met. Phys. 4 2084, 2096 (1974)

    Google Scholar 

  31. V. Albanis, S. Dhanjal, N.I. Zheludev, P. Petropoulos, D.J. Richardson, Opt. Express 5, 157 (1999)

    Google Scholar 

  32. X.F. Li, G.T. Fei, X.M. Chen, Y. Zhang, K. Zheng, X.L. Liu, L.D. Zhang, Europhys. Lett. 94, 16001 (2011)

    Google Scholar 

  33. P.C Wu, T.H. Kim, A.S. Brown, M. Losurdo, G. Bruno, H. O. Everitt, Appl. Phys. Lett. 90, 103119 (2007)

    Google Scholar 

  34. P.C. Wu, C.G. Khoury, T.H. Kim, Y. Yang, M. Losurdo, G.V. Bianco, T. Vo-Dinh, A.S. Brown, H.O. Everitt, J. Am. Chem. Soc. 131, 12032 (2009)

    Google Scholar 

  35. J.R. Ahn, P.G. Kang, K.D. Ryang, H.W. Yeom, Phys. Rev. Lett. 95, 196402 (2005)

    Google Scholar 

  36. D. Eom, S. Qin, M.Y. Chou, C.K. Shih, Phys. Rev. Lett. 96, 027005 (2006)

    Google Scholar 

  37. J. Neugebauer, T.K. Zywietz, M. Scheffler, J.E. Northrup, H. Chen, R.M. Feenstra, Phys. Rev. Lett. 90, 056101 (2003)

    Google Scholar 

  38. K.J. Laidler, Chemical Kinetics (Pearson Education, New York, 1987)

    Google Scholar 

  39. Th. Wolkenstein, O. Peshev, J. Catal. 4, 301 (1965)

    Google Scholar 

  40. T. Wolkenstein, Electronic Processes on Semiconductor Surfaces During Chemisorption Chap. 3, (Consultants Bureau, New York, 1991), pp. 83–124

    Google Scholar 

  41. W. Göpel, G. Rocker, J. Vac. Sci. Technol. 21, 389 (1982)

    Google Scholar 

  42. S. Choi, T.H. Kim, H.O. Everitt, A. Brown, M. Losurdo, G. Bruno, A. Moto, J. Vac. Sci. Technol. B 25, 969 (2007)

    Google Scholar 

  43. S. Choi, T.H. Kim, P.C Wu, A. Brown, H.O. Everitt, M. Losurdo, G. Bruno, 27, 107 (2009)

    Google Scholar 

  44. G. Bruno, M. Losurdo, T.H. Kim, A.S. Brown, Phys. Rev. B 82, 075326 (2010)

    Google Scholar 

  45. A.C. Templeton, W.P. Wuelfing, R.W. Murray, Acc. Chem. Res. 33, 27 (2000)

    Google Scholar 

  46. W. Pfeiffer, C. Kennerknecht, M. Merschdorf, Appl. Phys. A 78, 1011 (2004)

    Google Scholar 

  47. J.Y. Bigot, V. Halte, J.C. Merle, A. Daunois, Chem. Phys. 251, 181 (2000)

    Google Scholar 

  48. S. Link, M.A. El-Sayed, J. Phys. Chem. B 103, 8410 (1999)

    Google Scholar 

  49. J.R. Waldrop, R.W. Grant, Y.C. Wang, R.F. Davis, J. Appl. Phys. 72, 4757 (1992)

    Google Scholar 

  50. P.C. Wu, M. Losurdo, T.H. Kim, M. Giangregorio, G. Bruno, H.O. Everitt, A.S. Brown Langmuir 25, 924 (2009)

    Google Scholar 

  51. F. Mugele, J.C. Baret, J. Phys. Conden. Matter R705 (2005)

    Google Scholar 

  52. X. Zuo, S. He, D. Li, C. Peng, Q. Huang, S. Song, C. Fan, Langmuir, 26, 1936–1939 (2010)

    Google Scholar 

  53. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Science 312, 1191 (2006)

    Google Scholar 

  54. R.L. Johnston, Phil. Trans. R. Soc. Lond. A 356, 211 (1998)

    Google Scholar 

  55. M. Losurdo, M.M. Giangregorio, G.V. Bianco A.A. Suvorova, C. Kong, S. Rubanov, P. Capezzuto, J. Humlicek, G. Bruno, Phys. Rev. B 82, 155451 (2010)

    Google Scholar 

  56. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, vol. 25(Springer, Berlin, 1995)

    Google Scholar 

  57. P.C. Lee, D. Meisel, J. Phys. Chem. 86, 3391 (1982)

    Google Scholar 

  58. S. Nie, S.R. Emory, Science 275, 1102 (1997)

    Google Scholar 

  59. U. Kreibig, M. Gartz, A. Hilger, H. Hovel, Mie-plasmon spectroscopy: a tool of surface science, in Fine Particles Science and Technology ed. by E. Pelizzatti ( Kluwer Academic Publishers, Boston, 1996), pp. 499–516

    Google Scholar 

  60. R.M. Ostroff, D. Hopkins, A.B. Haeberli, W. Baouchi, B. Polisky, Clin. Chem. 45, 1659 (1999)

    Google Scholar 

  61. S. Zangooie, R. Bjorklund, H. Arwin, Sens. Actuators B 43, 168 (1997)

    Google Scholar 

  62. H. Nakanishi, K.J.M. Bishop, B. Kowalczyk, A. Nitzan, E.A. Weiss, K.V. Tretiakov, M.M. Apodaca, R. Klajn, J.F. Stoddart, B.A. Grzybowski, Nature 460, 371 (2009)

    Google Scholar 

  63. G. Bruno, F. Babudri, A. Operamolla, G.V. Bianco, M. Losurdo, M.M. Giangregorio, O. Hassan Omar, F. Mavelli, G.M. Farinola, P. Capezzuto, F. Naso, Langmuir 26, 8430 (2010)

    Google Scholar 

  64. M.M. Giangregorio, M. Losurdo, G.V. Bianco, A. Operamolla, E. Dilonardo, A. Sacchetti, P. Capezzuto, F. Babudri, G. Bruno, J. Phys. Chem. C 115, 19520 (2011)

    Google Scholar 

  65. K. Burrell, D.L. Officer, P.G. Plieger, D.C.W. Reid, Chem. Rev. 101, 2751 (2001)

    Google Scholar 

  66. A. Tsuda, A. Osuka, Science 293, 79 (2001)

    Google Scholar 

  67. I. Carmeli, I. Lieberman, L. Kraversky, Z.Y. Fan, A.O. Govorov, G. Markovich, S. Richter, Nano Lett. 10, 2069 (2010)

    Google Scholar 

  68. A. Yoshida, N. Kometani, J. Phys. Chem. C 114, 2867 (2010)

    Google Scholar 

  69. C. Creutz, B.S. Brunschwig, N. Sutin, Chem. Phys. 324, 244 (2006)

    Google Scholar 

  70. A. Desbois, M. Lutz, R. Banerjee, Biochemistry 18, 1510–1518 (1979)

    Google Scholar 

  71. G. Smulevicht, T.G. Spiro, J. Phys. Chem. 89, 5168 (1985)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the European Union 7th Framework Programme for the “NanoCharM” project support and the ONR, DARPA and Italian National Council of Research for financial support over the years through various projects. We also would like to thank our colleagues and students for fruitful collaboration and for many stimulating discussions regarding the use of ellipsometry in real time applications, in particular, Tong-Ho Kim, Pae C Wu and Soojeong Choi (at Duke University) and Pio Capezzuto and Michelaria Giangregorio (at IMIP-CNR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Losurdo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Losurdo, M., Brown, A.S., Bruno, G. (2013). Real-Time Ellipsometry for Probing Charge-Transfer Processes at the Nanoscale. In: Losurdo, M., Hingerl, K. (eds) Ellipsometry at the Nanoscale. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33956-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33956-1_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33955-4

  • Online ISBN: 978-3-642-33956-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics