Skip to main content

Succinct Landmark Database

  • Chapter
Intelligent Autonomous Systems 12

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 193))

Abstract

Recently developed robotic mapping techniques enable the acquisition of large scale landmark databases. This paper explores an approach for succinct landmark database, which memorizes a large collection of point landmarks while allowing to random access the location of i-th landmark. Our approach combines and extends three independent compression techniques: space coding, succinct data structure, and exemplar-based scene compression. Experiments using real datasets evaluate effectiveness of the presented techniques in terms of compactness, access speed, and accuracy of landmark database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeli, A., Filliat, D., Doncieux, S., Meyer, J.A.: A fast and incremental method for loop-closure detection using bags of visual words. IEEE Transactions on Robotics, Special Issue on Visual SLAM (2008) (conditionally accpeted for publication)

    Google Scholar 

  2. Cummins, M., Newman, P.: Accelerated appearance-only SLAM. In: Proc. IEEE International Conference on Robotics and Automation (2008)

    Google Scholar 

  3. Williams, B., Klein, G., Reid, I.: Real-time slam relocalisation. In: Proc. IEEE 11th Int. Conf. Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  4. Ila, V., Ni, K., Dellaert, F., Carlson, J., Thorpe, C.E.: Subgraph-preconditioned conjugate gradients for large scale slam. In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, IROS (2010)

    Google Scholar 

  5. Zhou, Q.-Y., Neumann, U.: 2.5d building modeling with topology control, pp. 2489–2496 (2011)

    Google Scholar 

  6. Brown, M.Z., Burschka, D., Hager, G.D.: Advances in computational stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 993–1008 (2003)

    Article  Google Scholar 

  7. Zhou, Q.-Y., Neumann, U.: A streaming framework for seamless building reconstruction from large-scale aerial lidar data, pp. 2759–2766 (2009)

    Google Scholar 

  8. Wonka, P., Wimmer, M., Sillion, F., Ribarsky, W.: Instant architecture. ACM Transaction on Graphics 22(3), 669–677 (2003)

    Article  Google Scholar 

  9. Pfister, H., Zwicker, M., Van Baar, J., Gross, M.: Surfels: Surface elements as rendering primitives. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 335–342 (2000)

    Google Scholar 

  10. Lafarge, F., Keriven, R., Brédif, M., Vu, H.: Hybrid multi-view reconstruction by Jump-Diffusion. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 350–357 (2010)

    Google Scholar 

  11. Schnabel, R., Klein, R.: Octree-based point-cloud compression (2006)

    Google Scholar 

  12. Gumhold, S., Karni, Z., Isenburg, M., Seidel, H.-P.: Predictive point-cloud compression (2005)

    Google Scholar 

  13. Botsch, M., Pajarola, R., (eds), Hubo, E., Mertens,T., Haber, T.: Self-similarity-based compression of point clouds, with application to ray tracing abstract (2007)

    Google Scholar 

  14. Sagan, H.: Space-filling curves. Springer (1994)

    Google Scholar 

  15. Hudson, B.: Succinct representation of well-spaced point clouds. CoRR, abs/0909.3137 (2009)

    Google Scholar 

  16. Brisaboa, N.R., Ladra, S., Navarro, G.: Directly addressable variable-length codes, pp. 122–130 (2009)

    Google Scholar 

  17. Tomoni, N., Kanji, T.: Dictionary-based map compression for sparse feature maps. In: Proc. IEEE Int. Conf. Robotics and Automation, ICRA (2011)

    Google Scholar 

  18. Cham, T.J., Ciptadi, A., Tan, W.C., Pham, M.T., Chia, L.T.: Estimating camera pose from a single urban ground-view omnidirectional image and a 2d building outline map (2010)

    Google Scholar 

  19. Kensuke, K., Kanji, T., Tomomi, N.: Grammar-based map compression using manhattan-world priors. In: Proc. IEEE Int. Conf. Robotics and Biomimetics, ROBIO (2011)

    Google Scholar 

  20. Tomomi, N., KanjiAn, T.: incremental scheme for dictionary-based compressive slam. In: Proc. IEEE Int. Conf. Intelligent Robots and Systems, IROS (2011)

    Google Scholar 

  21. Tomomi, N., Kanji, T.: Dictionary-based map compression using geometric priors. In: Proc. IEEE Int. Conf. Robotics and Biomimetics, ROBIO (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanji Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tanaka, K. (2013). Succinct Landmark Database. In: Lee, S., Cho, H., Yoon, KJ., Lee, J. (eds) Intelligent Autonomous Systems 12. Advances in Intelligent Systems and Computing, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33926-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33926-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33925-7

  • Online ISBN: 978-3-642-33926-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics