Skip to main content

A Computational Framework for Multilevel Morphologies

  • Chapter
  • First Online:
Morphogenetic Engineering

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

The hierarchical organisation of biological systems plays a crucial role in processes of pattern formation regulated by gene expression, and in morphogenesis in general. Inspired by the development of living organisms, the ability to reproduce a system’s dynamic at different levels of its hierarchy might also prove useful in the design of engineered products that manifest spatial self-organising properties. In this chapter, we describe a computational framework capable of supporting, through modelling and simulation, both the study of biological systems and the design of artificial systems that can autonomously develop a spatial structure by exploiting the potential of multilevel dynamics. Within this framework, we propose a model of the morphogenesis of Drosophila melanogaster reproducing the expression pattern in the embryo, then we examine a scenario of pervasive computing as a possible application of this model in the realisation of engineered products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The MS-BioNET distribution, including sources, is freely available on the web at: http://www.ms-bionet.apice.unibo.it.

  2. 2.

    http://urchin.spbcas.ru/flyex/

References

  1. Agha, G.: Computing in pervasive cyberspace. Commun. ACM 51(1), 68–70 (2008). doi:10.1145/1327452.1327484

    Google Scholar 

  2. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland Science Textbooks. Garland Science, New York (2002)

    Google Scholar 

  3. Alves, R., Antunes, F., Salvador, A.: Tools for kinetic modeling of biochemical networks. Nat. Biotechnol. 24(6), 667–672 (2006). doi:10.1038/nbt0606-667

    Google Scholar 

  4. Babaoglu, O., Canright, G., Deutsch, A., Caro, G.A.D., Ducatelle, F., Gambardella, L.M., Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A., Urnes, T.: Design patterns from biology for distributed computing. ACM Trans. Auton. Adapt. Syst. 1(1), 26–66 (2006). doi:10.1145/1152934.1152937

  5. Barros, A.P., Dumas, M.: The rise of web service ecosystems. IT Prof. 8(5), 31–37 (2006). doi:10.1109/MITP.2006.123

    Google Scholar 

  6. Beal, J., Bachrach, J.: Infrastructure for engineered emergence on sensor/actuator networks. IEEE Intell. Syst. 21(2), 10–19 (2006). doi:10.1109/MIS.2006.29

  7. Beal, J., Bachrach, J., Vickery, D., Tobenkin, M.: Fast self-healing gradients. In: SAC ’08: Proceedings of the 2008 ACM Symposium on Applied Computing, pp. 1969–1975. ACM, New York (2008). doi:10.1145/1363686.1364163

  8. Berryman, A.A.: The origins and evolution of predator-prey theory. Ecology 73(5), 1530–1535 (1992)

    Article  Google Scholar 

  9. Crowcroft, J.: Toward a network architecture that does everything. Commun. ACM 51(1), 74–77 (2008). doi:10.1145/1327452.1327486

    Google Scholar 

  10. Denti, E., Omicini, A., Ricci, A.: Multi-paradigm Java-Prolog integration in tuProlog. Sci. Comput. Program. 57(2), 217–250 (2005). doi:10.1016/j.scico.2005.02.001, http://authors.elsevier.com/sd/article/S0167642305000158

    Google Scholar 

  11. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104(9), 1876–1889 (2000). doi:10.1021/jp993732q

    Article  Google Scholar 

  12. Gilbert, S.F.: Developmental Biology, 8th edn. Sinauer Associates Inc, Massachusetts (2006)

    Google Scholar 

  13. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  14. Greenwald, I., Rubin, G.M.: Making a difference: the role of cell-cell interactions in establishing separate identities for equivalent cells. Cell 68, 271–281 (1992)

    Article  Google Scholar 

  15. Longabaugh, W.J., Davidson, E.H., Bolouri, H.: Visualization, documentation, analysis, and communication of large-scale gene regulatory networks. Biochimica et Biophysica Acta (BBA) Gene Regul. Mech. 1789(4), 363–374 (2009)

    Google Scholar 

  16. Mamei, M., Zambonelli, F.: Field-Based Coordination for Pervasive Multiagent Systems. Springer, Berlin (2006)

    Google Scholar 

  17. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing applications: The tota approach. ACM Trans. Softw. Eng. Methodol. 18(4), 1–56 (2009). doi:10.1145/1538942.1538945

  18. Montagna, S., Viroli, M.: A framework for modelling and simulating networks of cells. Electron. Notes Theor. Comput. Sci. 268, 115–129 (2010). Proceedings of the 1st International Workshop on Interactions between Computer Science and Biology (CS2Bio’10)

    Google Scholar 

  19. Paun, G.: Membrane Computing: An Introduction. Springer-Verlag New York, Inc., Secaucus (2002)

    MATH  Google Scholar 

  20. Perkins, T.J., Jaeger, J., Reinitz, J., Glass, L.: Reverse engineering the gap gene network of Drosophila Melanogaster. PLoS Comput. Biol. 2(5), e51 (2006). doi:10.1371/journal.pcbi.0020051

    Article  Google Scholar 

  21. Phillips, A.: The Stochastic Pi Machine (SPiM), Version 0.042. http://www.doc.ic.ac.uk/anp/spim/ (2006)

  22. Pisarev, A., Poustelnikova, E., Samsonova, M., Reinitz, J.: Flyex, the quantitative atlas on segmentation gene expression at cellular resolution. Nucleic Acids Res. 37(Database-Issue), 560–566 (2009)

    Google Scholar 

  23. Poustelnikova, E., Pisarev, A., Blagov, M., Samsonova, M., Reinitz, J.: A database for management of gene expression data in situ. Bioinformatics 20(14), 2212–2221 (2004)

    Article  Google Scholar 

  24. Spicher, A., Michel, O., Cieslak, M., Giavitto, J.L., Prusinkiewicz, P.: Stochastic P systems and the simulation of biochemical processes with dynamic compartments. Biosystems 91(3), 458–472 (2008)

    Article  Google Scholar 

  25. Spicher, A., Michel, O., Giavitto, J.L.: A topological framework for the specification and the simulation of discrete dynamical systems. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) Cellular Automata. Lecture Notes in Computer Science, vol. 3305, pp. 238–247. Springer, Berlin/Heidelberg (2004)

    Google Scholar 

  26. Surkova, S., Kosman, D., Kozlov, K.: Manu, Myasnikova, E., Samsonova, A.A., Spirov, A., Vanario-Alonso, C.E., Samsonova, M., Reinitz, J.: Characterization of the Drosophila segment determination morphome. Dev. Biol. 313(2), 844–862 (2008)

    Google Scholar 

  27. Uhrmacher, A.M., Degenring, D., Zeigler, B.: Discrete event multi-level models for systems biology. In: Priami, C. (ed.) Transactions on Computational Systems Biology I. Lecture Notes in Computer Science, vol. 3380, pp. 66–89. Springer, Heidelberg (2005)

    Google Scholar 

  28. Versari, C., Busi, N.: Efficient stochastic simulation of biological systems with multiple variable volumes. Electr. Notes Theor. Comput. Sci. 194(3), 165–180 (2008)

    Article  Google Scholar 

  29. Villalba, C., Rosi, A., Viroli, M., Zambonelli, F.: Nature-inspired spatial metaphors for pervasive service ecosystems. In: Workshop on Spatial Computing, Venice, Italy (Informal Proceedings) (2008)

    Google Scholar 

  30. Viroli, M., Casadei, M., Montagna, S., Zambonelli, F.: Spatial coordination of pervasive services through chemical-inspired tuple spaces. ACM Trans. Auton. Adapt. Syst. 6(2), 14:1–14:24 (2011). doi:10.1145/1968513.1968517

    Google Scholar 

  31. Viroli, M., Casadei, M., Omicini, A.: A framework for modelling and implementing self-organising coordination. In: Shin, S.Y., Ossowski, S., Menezes, R.. Viroli, M. (eds.) 24th Annual ACM Symposium on Applied Computing (SAC 2009), vol. III, pp. 1353–1360. ACM, Honolulu, Hawai’i, USA (2009)

    Google Scholar 

  32. Zambonelli, F., Viroli, M.: Architecture and metaphors for eternally adaptive service ecosystems. In: IDC’08, Studies in Computational Intelligence, vol. 162/2008, pp. 23–32. Springer, Berlin/Heidelberg (2008). doi:10.1007/978-3-540-85257-5-3

Download references

Acknowledgments

We thank Alessandro Ricci for the comments and suggestions he gave us on this work. We used data from the FlyEx database http://urchin.spbcas.ru/flyex/ for initialising and validating the model of Drosophila morphogenesis presented.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Montagna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Montagna, S., Viroli, M. (2012). A Computational Framework for Multilevel Morphologies. In: Doursat, R., Sayama, H., Michel, O. (eds) Morphogenetic Engineering. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33902-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33902-8_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33901-1

  • Online ISBN: 978-3-642-33902-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics