Skip to main content

Embryomorphic Engineering: Emergent Innovation Through Evolutionary Development

  • Chapter
  • First Online:
Morphogenetic Engineering

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Embryomorphic Engineering, a particular instance of Morphogenetic Engineering, takes its inspiration directly from biological development to create new robotic, software or network architectures by decentralized self-assembly of elementary agents. At its core, it combines three key principles of multicellular embryogenesis: chemical gradient diffusion (providing positional information to the agents), gene regulatory networks (triggering their differentiation into types, thus patterning), and cell division or aggregation (creating structural constraints, thus reshaping). This chapter illustrates the potential of Embryomorphic Engineering in different spaces: 2D/3D physical swarms, which can find applications in collective robotics, synthetic biology or nanotechnology; and \(n\)D graph topologies, which can find applications in distributed software and peer-to-peer techno-social networks. In all cases, the specific genotype shared by all the agents makes the phenotype’s complex architecture and function modular, programmable and reproducible.

This chapter is a condensed review version of references [1622]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Nagpal, R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Commun. ACM 43(5), 74–82 (2000)

    Article  Google Scholar 

  2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  3. Beal, J., Bachrach, J.: Infrastructure for engineered emergence on sensor/actuator networks. IEEE Intell. Syst. 21(2), 10–19 (2006)

    Article  Google Scholar 

  4. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate: languages for spatial computing. Comput. Res. Repos. abs/1202.5509 (2012)

    Google Scholar 

  5. Bentley, P., Kumar, S.: Three ways to grow designs: a comparison of embryogenies for an evolutionary design problem. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 1, pp. 35–43. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  6. Callebaut, W., Rasskin-Gutman, D.: Modularity: understanding the development and evolution of natural complex systems. The MIT Press, Cambridge (2005)

    Google Scholar 

  7. Carroll, S.B.: Endless Forms Most Beautiful: The New Science of Evo Devo and the Making of the Animal Kingdom. W. W. Norton, New York (2005)

    Google Scholar 

  8. Carroll, S.B., Grenier, J.K., Weatherbee, S.D.: From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design. Wiley-Blackwell, Malden (2001)

    Google Scholar 

  9. Christensen, A.L., O’Grady, R., Dorigo, M.: Morphology control in a multirobot system. IEEE Robot. Autom. Mag. 14(4), 18–25 (2007)

    Article  Google Scholar 

  10. Coen, E.: The Art of Genes. Oxford University Press, Oxford (2000)

    Google Scholar 

  11. Coen, E., Rolland-Lagan, A.G., Matthews, M., Bangham, J.A., Prusinkiewicz, P.: The genetics of geometry. Proc. Natl. Acad. Sci. U. S. A. 101(14), 4728–4735 (2004)

    Article  Google Scholar 

  12. Coore, D.N.: Botanical computing: a developmental approach to generating interconnect topologies on an amorphous computer. Ph.D. thesis, MIT (1999)

    Google Scholar 

  13. von Dassow, G., Meir, E., Munro, E.M., Odell, G.M.: The segment polarity network is a robust developmental module. Nature 406, 188–192 (2000)

    Article  Google Scholar 

  14. Dawkins, R.: Climbing Mount Improbable. W.W. Norton& Company, New York (1996)

    Google Scholar 

  15. Diaconescu, A., Lalanda, P.: A decentralized, architecture-based framework for self-growing applications. In: Proceedings of the 6th International Conference on Autonomic Computing, pp. 55–56. ACM (2009)

    Google Scholar 

  16. Doursat, R.: The growing canavas of biological development: multiscale pattern generation on an expanding lattice of gene regulatory networks. Inter J. Complex Syst. 1809 (2006)

    Google Scholar 

  17. Doursat, R.: Organically grown architectures: creating decentralized, autonomous systems by embryomorphic engineering. In: R.P. Würtz (ed.) Organic Computing, Understanding Complex Systems, pp. 167–199. Springer, Heidelberg (2008)

    Google Scholar 

  18. Doursat, R.: Programmable architectures that are complex and self-organized: from morphogenesis to engineering. In: Artificial Life XI: Proceedings of the 11th International Conference on the Simulation and Synthesis of Living Systems (Alife XI), pp. 181–188. MIT Press, Cambridge (2008)

    Google Scholar 

  19. Doursat, R.: Facilitating evolutionary innovation by developmental modularity and variability. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 683–690. ACM (2009)

    Google Scholar 

  20. Doursat, R., Fourquet, D., Dordea, R., Kowaliw, T.: Morphogenetic engineering by program-limited aggregation. To appear (2013).

    Google Scholar 

  21. Doursat, R., Sánchez, C., Fernández, J.D., Kowaliw, T., Vico, F.: Function from structure from development: a dynamical evo-devo model of complex artificial organisms. To appear (2013).

    Google Scholar 

  22. Doursat, R., Ulieru, M.: Emergent engineering for the management of complex situations. In: Proceedings of the 2nd International Conference on Autonomic Computing and Communication Systems, vol 14. ICST, Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2008

    Google Scholar 

  23. Dressler, F.: Self-Organization in Sensor and Actor Networks. Wiley, New York (2007)

    Google Scholar 

  24. Edelman, G.M.: Topobiology: An Introduction to Molecular Embryology. Basic Books, New York (1988)

    Google Scholar 

  25. Eggenberger, P.: Evolving morphologies of simulated 3d organisms based on differential gene expression. In: Proceedings of the Fourth European Conference on, Artificial Life, pp. 205–213, 1997

    Google Scholar 

  26. Floreano, D., Mattiussi, C.: Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. The MIT Press, Cambridge (2008)

    Google Scholar 

  27. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exp. 21(11), 1129–1164 (1991)

    Google Scholar 

  28. Gierer, A., Meinhardt, H.: A theory of biological pattern formation. Biol. Cybern. 12(1), 30–39 (1972)

    Google Scholar 

  29. Goldstein, S.C., Campbell, J.D., Mowry, T.C.: Programmable matter. Computer 38(6), 99–101 (2005)

    Article  Google Scholar 

  30. Goodwin, B.C.: How the leopard changed its spots: the evolution of complexity. Scribner, New York (1994)

    Google Scholar 

  31. Grégoire, G., Chaté, H.: Onset of collective and cohesive motion. Phys. Rev. Lett. 92(2), 025702–025704 (2004)

    Google Scholar 

  32. Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in swarm-bots. IEEE Trans. Robot. 22(6), 1115–1130 (2006)

    Article  Google Scholar 

  33. Hofmeyr, S.A., Forrest, S.: Architecture for an artificial immune system. Evol. Comput. 8(4), 443–473 (2000)

    Article  Google Scholar 

  34. Hogeweg, P.: Evolving mechanisms of morphogenesis: on the interplay between differential adhesion and cell differentiation. J. Theor. Biol. 203(4), 317–333 (2000)

    Article  Google Scholar 

  35. Hornby, G.S., Pollack, J.B.: Creating high-level components with a generative representation for body-brain evolution. Artif. Life 8(3), 223–246 (2002)

    Article  Google Scholar 

  36. Joachimczak, M., Kowaliw, T., Doursat, R., Wrobel, B.: Brainless bodies: controlling the development and behavior of multicellular animats by gene regulation and diffusive signals. In: Artificial Life 13: Proceedings of the Thirteenth International Conference on the Simulation and Synthesis of Living Systems, pp. 349–356, 2012

    Google Scholar 

  37. Joachimczak, M., Wróbel, B.: Evo-devo in silico: a model of a gene network regulating multicellular development in 3d space with artificial physics. In: Artificial Life XI: Proceedings of the Eleventh International Conference on the Simulation and Synthesis of Living Systems, pp. 297–304, 2008

    Google Scholar 

  38. Kauffman, S.A.: The Origins of Order: Self Organization and Selection in Evolution. Oxford University Press, Oxford (1993)

    Google Scholar 

  39. Kauffman, S.A.: Reinventing the Sacred: A New View of Science, Reason, and Religion. Basic Books, New York (2008)

    Google Scholar 

  40. Kirschner, M.W., Gerhart, J.C.: The Plausibility of Life: Resolving Darwin’s Dilemma. Yale University Press, New Haven (2005)

    Google Scholar 

  41. Komosinski, M., Rotaru-Varga, A.: Comparison of different genotype encodings for simulated three-dimensional agents. Artif. Life 7(4), 395–418 (2001)

    Article  Google Scholar 

  42. Kondo, S., Asai, R.: A reaction-diffusion wave on the skin of the marine angelfish pomacanthus. Nature 376, 765–768 (1995)

    Article  Google Scholar 

  43. Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406(6799), 974–978 (2000)

    Article  Google Scholar 

  44. Marée, A.F.M., Hogeweg, P.: How amoeboids self-organize into a fruiting body: multicellular coordination in dictyostelium discoideum. Proc. Natl. Acad. Sci. U. S. A. 98(7), 3879–3883 (2001)

    Article  Google Scholar 

  45. Meinhardt, H.: The Algorithmic Beauty of Sea Shells. Springer, Berlin (2003)

    Google Scholar 

  46. Miller, J.F., Banzhaf, W.: Evolving the program for a cell: from french flags to boolean circuits. In: On Growth, Form and Computers, pp. 278–301, 2003

    Google Scholar 

  47. Mjolsness, E., Sharp, D.H., Reinitz, J.: A connectionist model of development. J. Theor. Biol. 152(4), 429–453 (1991)

    Article  Google Scholar 

  48. Müller, G.B., Newman, S.A.: Origination of Organismal Form: Beyond the Gene in Developmental and Evolutionary Biology. The MIT Press, Cambridge (2003)

    Google Scholar 

  49. Nagpal, R.: Programmable self-assembly using biologically-inspired multiagent control. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems: Part 1, pp. 418–425. ACM (2002)

    Google Scholar 

  50. Nijhout, H.F.: A comprehensive model for colour pattern formation in butterflies. Proc. Royal Soc. Lond. B Biol. Sci. 239, 81–113 (1990)

    Google Scholar 

  51. Nilsson, D.E., Pelger, S.: A pessimistic estimate of the time required for an eye to evolve. Proc. Royal Soc. Lond. Ser. B Biol. Sci. 256(1345), 53–58 (1994)

    Article  Google Scholar 

  52. Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer, New York (1990)

    Google Scholar 

  53. Salazar-Ciudad, I., Garcia-Fernández, J., Solé, R.: Gene networks capable of pattern formation: from induction to reaction-diffusion. J. Theor. Biol. 205(4), 587–603 (2000)

    Article  Google Scholar 

  54. Salazar-Ciudad, I., Jernvall, J.: A gene network model accounting for development and evolution of mammalian teeth. Proc. Natl. Acad. Sci. U. S. A. 99, 8116–8120 (2002)

    Google Scholar 

  55. Sayama, H.: Decentralized control and interactive design methods for large-scale heterogeneous self-organizing swarms. In: Proceedings of the 9th European Conference on Advances in Artificial Life, pp. 675–684. Springer (2007)

    Google Scholar 

  56. Sayama, H.: Swarm chemistry. Artif. Life 15(1), 105–114 (2009)

    Article  Google Scholar 

  57. Sayama, H.: Seeking open-ended evolution in swarm chemistry. In: Artificial Life (ALIFE), 2011 IEEE Symposium on, pp. 186–193. IEEE (2011)

    Google Scholar 

  58. Schlosser, G., Wagner, G.P.: Modularity in Development and Evolution. University of Chicago Press, Chicago (2004)

    Google Scholar 

  59. Schramm, L., Jin, Y., Sendhoff, B.: Emerged coupling of motor control and morphological development in evolution of multi-cellular animats. In: Advances in Artificial Life. Darwin Meets von Neumann, pp. 27–34, 2011

    Google Scholar 

  60. Shapiro, B.E., Levchenko, A., Meyerowitz, E.M., Wold, B.J., Mjolsness, E.D.: Cellerator: extending a computer algebra system to include biochemical arrows for signal transduction simulations. Bioinformatics 19(5), 677–678 (2003)

    Article  Google Scholar 

  61. Siero, P.L.J., Rozenberg, G., Lindenmayer, A.: Cell division patterns: syntactical description and implementation. Comput. Graph. Image Process. 18(4), 329–346 (1982)

    Article  Google Scholar 

  62. Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artif. Life 9(2), 93–130 (2003)

    Article  Google Scholar 

  63. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. Royal Soc. Lond. Ser. B Biol. Sci. 237, 37–72 (1952)

    Article  Google Scholar 

  64. Ulieru, M., Doursat, R.: Emergent engineering: a radical paradigm shift. Int. J. Auton. Adapt. Commun. Syst. 4(1), 39–60 (2011)

    Article  Google Scholar 

  65. Ulieru, M., Unland, R.: Emergent e-logistics infrastructure for timely emergency response management. In: G. Di Marzo Serugendo et al. (eds.) Engineering Self-Organising Systems: Nature Inspired Approaches to Software Engineering, pp. 139–156. Springer, Berlin (2004)

    Google Scholar 

  66. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229 (1995)

    Article  Google Scholar 

  67. Watson, R.A., Pollack, J.B.: Modular interdependency in complex dynamical systems. Artif. Life 11(4), 445–457 (2005)

    Article  Google Scholar 

  68. Webster, G., Goodwin, B.C.: Form and Transformation: Generative and Relational Principles in Biology. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  69. Whitesides, G.M., Grzybowski, B.: Self-assembly at all scales. Science 295, 2418–2421 (2002)

    Article  Google Scholar 

  70. Winfield, A., Harper, C., Nembrini, J.: Towards dependable swarms and a new discipline of swarm engineering. In: Swarm Robotics, pp. 126–142, 2005

    Google Scholar 

  71. Wolpert, L.: Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25(1), 1–47 (1969)

    Article  Google Scholar 

  72. Wolpert, L., Beddington, R., Jessell, T., Lawrence, P., Meyerowitz, E., Smith, J.: Principles of Development, vol. 3. Oxford University Press, Oxford (2002)

    Google Scholar 

  73. Young, D.A.: A local activator-inhibitor model of vertebrate skin patterns. Math. Biosci. 72(1), 51–58 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Since the inception of Embryomorphic Engineering in 2006, R. Doursat’s positions have been funded by the Brain Lab and Department of Computer Science, University of Nevada, Reno; the Complex Systems Institute, Paris Ile-de-France (ISC-PIF), CNRS; and the Research Group in Biomimetics (GEB), Universidad de Málaga, Spain. C.A. Sánchez is a PhD student at GEB since 2011. R. Dordea and D. Fourquet are MSc students by Ecole Polytechnique, Paris. T. Kowaliw is a research scientist at ISC-PIF since 2010, supported by Région Ile-de-France and the French ANR project grant “SynBioTIC” 2010-BLAN-0307-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Doursat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Doursat, R., Sánchez, C., Dordea, R., Fourquet, D., Kowaliw, T. (2012). Embryomorphic Engineering: Emergent Innovation Through Evolutionary Development. In: Doursat, R., Sayama, H., Michel, O. (eds) Morphogenetic Engineering. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33902-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33902-8_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33901-1

  • Online ISBN: 978-3-642-33902-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics