Skip to main content

Terfezia Cultivation in Arid and Semiarid Soils

  • Chapter
  • First Online:
Edible Ectomycorrhizal Mushrooms

Part of the book series: Soil Biology ((SOILBIOL,volume 34))

Abstract

Since the first plantation of Terfezia mycorrhizal plants was established in 1999 in Murcia (Spain), an increasing demand for this crop, not only in Spain but also in other countries, has prompted research into new strategies and aspects that will enable us to pass from the experimental scale to medium- to large-scale cultivation. As a consequence of this leap, a new photoautotrophic Helianthemum micropropagation system has been developed. This system reduces the time needed to obtain mycorrhizal plants to 3 months since fungal inoculation is carried out at the moment plants are transferred from in vitro to ex vitro conditions, so that plant acclimatization and mycorrhization occur at the same time.

Among the factors that most influence desert truffle production are water availability (irrigation), weed management, planting season, soil characteristics, and the frame of plantation. Special attention is focused on the water availability factor in this chapter.

We found a statistical correlation between rainfall during the autumn of one year and Terfezia claveryi truffle production the following year. This new and important finding will help prevent reduced desert truffle production after dry years by enabling us to adjust soil water potential to the plant physiological parameters necessary to keep the mycorrhizal symbiosis productive. Physiological and molecular studies on T. claveryi mycelium and its symbiosis with Helianthemum almeriense have been carried out, and an aquaporin gene from T. claveryi (TcAQP1) that increases both water and CO2 conductivity in biological membranes has been cloned. This aquaporin gene has a role in improving the drought-stress tolerance of the mycelium. TcAQP1 expression was seen to be regulated to some extent during root colonization by the mycelium, which demonstrates the importance of this membrane channel in mycorrhizal symbiosis and in mycelium organization for ascoma formation.

Finally, particular management practices are recommended for maximizing desert truffle production in an orchard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alsheikh A (1984) Mycorrhizae of annual Helianthemum species formed with desert truffles. In: Proceedings of 6th North American conference on mycology, Oregon State University, Corvallis, OR

    Google Scholar 

  • Ammarellou A, Saremi H (2008) Mycorrhiza between Kobresia bellardii (All) Degel and Terfezia boudieri Chatin. Turk J Bot 32:17–23

    Google Scholar 

  • Andrino A, Morte A, Honrubia A (2011) Method for producing plants of the Cistaceae family that establish mycorrhiza with different desert truffle species. Patent nº 201100216

    Google Scholar 

  • Awameh M, Alsheikh A, Ghawwas S (1979) Mycorrhizal synthesis between Helianthemum ledifolium, H. salicifolium and four species of Terfezia and Tirmania using ascospores and mycelial cultures obtained from ascospores germination. In: Proceedings of 4th North American conference on mycology, Fort Collins, CO

    Google Scholar 

  • Bécard G, Piché Y (1989) Fungal growth-stimulation by CO2 and root exudates in vesicular arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320–2325

    PubMed  Google Scholar 

  • Bois G, Bertrand A, Piche Y, Fung M, Khasa DP (2006) Growth, compatible solute and salt accumulation of five mycorrhizal fungal species grown over a range of NaCl concentrations. Mycorrhiza 16:99–109. doi:10.1007/s00572-005-0020-y

    Article  PubMed  CAS  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1(4):1–48

    Article  Google Scholar 

  • Chakravarty P, Chatarpaul L (1990) Non-target effect of herbicides. II. The influence of glyphosate on ectomycorrhizal symbiosis of red pine (Pinus resinosa) under greenhouse and field conditions. Pesticide Sci 28:243–247. doi:10.1002/ps.2780280303

    Article  CAS  Google Scholar 

  • Coleman MD, Bledsoe CS, Lopushinsky W (1989) Pure culture response of ectomycorrhizal fungi to imposed water stress. Can J Bot 67:29–39

    Article  Google Scholar 

  • Cui YY, Hahn EJ, Kozai T, Paek KY (2000) Number of air exchanges, sucrose concentration, photosynthetic photon flux, and differences in photoperiod and dark period temperatures affect growth of Rehmannia glutinosa plantlets in vitro. Plant Cell Tissue Organ Cult 62:219–226. doi:10.1023/A:1006412321864

    Article  CAS  Google Scholar 

  • Dexheimer J, Gerard J, Leduc JP, Chevalier G (1985) Étude ultrastructurale comparée des associations symbiotiques mycorhiziennes Helianthemum salicifoliumTerfezia claveryi et Helianthemum salicifoliumTerfezia leptoderma. Can J Bot 63:582–591. doi:10.1139/b85-073

    Article  Google Scholar 

  • Díez J, Manjón JL, Martin F (2002) Molecular phylogeny of the mycorrhizal desert truffles (Terfezia and Tirmania), host specificity and edaphic tolerance. Mycologia 94(2):247–259

    Article  PubMed  Google Scholar 

  • Duñabeitia MK, Hormilla S, García-Plazaola JI, Txarterina K, Arteche U, Becerril JM (2004) Differential responses of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiata D. Don. Mycorrhiza 14:11–18. doi:10.1007/s00572-007-0149-y

    Article  PubMed  Google Scholar 

  • Fortas Z, Chevalier G (1992) Effets des conditions de culture sur la mycorrhization de l´Helianthemum guttatum par trois espèces de terfez des genres Terfezia et Tirmania d´Algerie. Can J Bot 70:2453–2460

    Article  Google Scholar 

  • Franks P, Drake P, Froend R (2007) Anisohydric but isohydrodynamic: seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. Plant Cell Environ 30:19–30. doi:10.1111/j.1365-3040.2006.01600.x

    Article  PubMed  Google Scholar 

  • Fujiwara K, Kozai T (1995) Physical microenvironment and its effects. In: Aitken-Christie J, Kozai T, Smith MAL (eds) Automation and environmental control in plant tissue culture. Kluwer Academic, Dordrecht, pp 319–369

    Google Scholar 

  • Gutiérrez A (2001) Caracterización, micorrización y cultivo en campo de las trufas de desierto. Doctoral thesis, University of Murcia, Spain

    Google Scholar 

  • Gutiérrez A, Morte A, Honrubia M (2003) Morphological characterization of the mycorrhiza formed by Helianthemum almeriense Pau with Terfezia claveryi Chatin and Picoa lefebvrei (Pat.) Maire. Mycorrhiza 13:299–307. doi:10.1007/s00572-003-0236-7

    Article  PubMed  Google Scholar 

  • Honrubia M, Morte A, Gutiérrez A, González F, Dieste C (2003) Las Turmas o Trufas de Desierto. In: Esteve-Selma MA, Lloréis-Pascual M, Martínez-Gallur C (eds) Los Recursos Naturales de la Región de Murcia. Un Análisis Interdisciplinar. Servicio de Publicaciones de la Universidad de Murcia, Madrid

    Google Scholar 

  • Honrubia M, Morte A, Gutiérrez A (2007) Las Terfezias. Un cultivo para el desarrollo rural en regiones áridas y semi-áridas. In: Truficultura, Fundamentos y Técnicas. Santiago Reyna (coord.). Ediciones Mundi-Prensa, Madrid, pp 365–397

    Google Scholar 

  • Janakat S, Nassar M (2010) Hepatoprotective activity of desert truffle (Terfezia claveryi) in comparison with the effect of Nigella sativa in the rat. Pak J Nutr 9:52–56

    Article  Google Scholar 

  • Janakat SM, Al-Fakhiri SM, Sallal AKJ (2004) A promising peptide antibiotic from Terfezia claveryi aqueous extract against Staphylococcus aureus in vitro. Phytother Res 18(10):810–813. doi:10.1002/ptr.1563

    Article  PubMed  CAS  Google Scholar 

  • Janakat SM, Al-Fakhiri SM, Sallal AKJ (2005) Evolution of antibacterial activity of aqueous and methanolic extracts of the truffle Terfezia claveryi against Pseudomonas aeruginosa. Saudi Med J 26(6):952–955

    PubMed  Google Scholar 

  • Jones HG, Sutherland RA (1991) Stomatal control of xylem embolism. Plant Cell Environ 11:111–121. doi:10.1111/j.1365-3040.1991.tb01532.x

    Google Scholar 

  • Kitaya Y, Ohmura Y, Kubota C, Kozai T (2005) Manipulation of the culture environment on in vitro air movement and its impact on plantlets photosynthesis. Plant Cell Tissue Organ Cult 83:251–257. doi:10.1007/s11240-005-6839-2

    Article  CAS  Google Scholar 

  • Kovács GM, Vagvolgyi C, Oberwinkler F (2003) In vitro interaction of the truffle Terfezia terfezioides with Robinia pseudoacacia and Helianthemum ovatum. Folia Microbiol 48(3):360–378

    Article  Google Scholar 

  • Kovács GM, Trappe JM, Alsheikh AM, Bòka K, Elliot TF (2008) Imaia, a new truffle genus to accommodate Terfezia gigantea. Mycologia 100(6):930–939. doi:10.3852/08-023

    Article  PubMed  Google Scholar 

  • Kozai T (1991) Photoautotrophic micropropagation. In Vitro Cell Dev Biol 27:47–51

    Article  Google Scholar 

  • Kruse E, Uehlein N, Kaldenhoff R (2006) The aquaporins. Genome Biol 7(2):206. doi:10.1186/gb-2006-7-2-206

    Article  PubMed  Google Scholar 

  • Laessøe T, Hansen K (2007) Truffle trouble: what happens to the Tuberales. Mycol Res 111:1075–1099. doi:10.1016/j.mycres.2007.08.004

    Article  PubMed  Google Scholar 

  • Majada JP, Fall MA, Tadeo F, Sánchez-Tamés R (2002) Effects of natural ventilation on leaf ultrastructure of Dianthus caryophyllus L. cultured in vitro. In Vitro Cell Dev Biol Plant 38:272–278. doi:10.1079/IVP2001271

    Article  Google Scholar 

  • Malençon G (1973) Champignons hypogés du Nord de l’Afrique. I Ascomycetes. Persoonia 7(2):261–288

    Google Scholar 

  • Mexal J, Reid CPP (1973) The growth of selected mycorrhizal fungi in response to induced water stress. Can J Bot 51:1579–1588. doi:10.1139/b73-201

    Article  Google Scholar 

  • Morte A, Honrubia M (1992) In vitro propagation of Helianthemum almerinse Pau (Cistaceae). Agronomie 12:807–809

    Article  Google Scholar 

  • Morte A, Honrubia M (1995) Improvement of mycorrhizal synthesis between micropropagated Helianthemum almeriense plantlets with Terfezia claveryi (desert truffle). In: Elliot TJ (ed) Science and cultivation of edible fungi, vol 2. Balkema, Rotterdam

    Google Scholar 

  • Morte A, Honrubia M (1997) Micropropagation of Helianthemum almeriense. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 40, High-tech and micropropagation. Springer, Berlin

    Google Scholar 

  • Morte A, Cano A, Honrubia M, Torres P (1994) In vitro mycorrhization of micropropagated Helianthemum almeriense plantlets with Terfezia claveryi (desert truffle). Agric Sci Finland 3:309–314

    Google Scholar 

  • Morte A, Lovisolo C, Schubert A (2000) Effect of drought stress on growth and water relations of the mycorrhizal associations Helianthemum almeriense-Terfezia claveryi. Mycorrhiza 10:115–119. doi:10.1007/s00572000006

    Article  CAS  Google Scholar 

  • Morte A, Gutiérrez A, Honrubia M (2008) Biotechnology and cultivation of desert truffles. In: Varma A (ed) Mycorrhiza: biology, genetics, novel endophytes and biotechnology, 3rd edn. Springer, Germany

    Google Scholar 

  • Morte A, Zamora M, Gutiérrez A, Honrubia M (2009) Desert truffle cultivation in semiarid Mediterranean areas. In: Gianinazzi-Pearson V, Azcón C (eds) Mycorrhizas: functional processes and ecological impact, Chap 15. Springer, Heidelberg

    Google Scholar 

  • Morte A, Navarro-Ródenas A, Nicolás E (2010) Physiological parameters of desert truffle mycorrhizal Helianthemum almeriense plants cultivated in orchards under water deficit conditions. Symbiosis 52(2):133–139. doi:10.1007/s13199-010-0080-4

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:437–497

    Article  Google Scholar 

  • Murcia MA, Matínez-Tomé M, Jiménez AM, Vera AM, Honrubia M, Parras P (2002) Antioxidant activity of edible fungi (truffles and mushrooms): losses during industrial processing. J Food Prot 65(10):22–30

    Google Scholar 

  • Murcia MA, Martínez-Tomé M, Vera A, Morte A, Gutierrez A, Honrubia M, Jiménez AM (2003) Effect of industrial processing on desert truffles Terfezia claveryi and Picoa juniperi Vitt: proximate composition an fatty acids. J Sci Food Agric 83:535–541

    Article  CAS  Google Scholar 

  • Navarro-Ródenas A, Morte A, Pérez-Gilabert M (2009) Partial purification, characterisation and histochemical localisation of alkaline phosphatase from ascocarps of the edible desert truffle Terfezia claveryi Chatin. Plant Biol 11:678–685

    Article  PubMed  Google Scholar 

  • Navarro-Ródenas A, Lozano-Carrillo M, Pérez-Gilabert M, Morte A (2011) Effect of water stress on in vitro mycelium cultures of two mycorrhizal desert truffles. Mycorrhiza 21(4):247–253. doi:10.1007/s00572-010-0329-z

    Article  PubMed  Google Scholar 

  • Navarro-Ródenas A, Ruiz-Lozano JM, Kaldenhoff R, Morte A (2012) The aquaporin TcAQP1 of the desert truffle Terfezia claveryi is a membrane pore for water and CO2 transport. Mol Plant Microbe Interact. doi:10.1094/MPMI-07-11-0190

  • Nicolás E, Ferrandez T, Rubio JS, Alarcón JJ, Sánchez-Blanco MJ (2008) Annual water status, development and flowering pattern for Rosmarinus officinalis plants under different irrigation conditions. HortScience 43:1580–1585

    Google Scholar 

  • Norman JE, Egger KN (1999) Molecular phylogenetic analysis of Peziza and related genera. Mycologia 91:820–829

    Article  CAS  Google Scholar 

  • Ortega U, Duñabeitia M, Menendez S, González-Murua C, Majada J (2004) Effectiveness of mycorrhizal inoculation in the nursery on growth and water relations of Pinus radiata in different water regimes. Tree Physiol 24(1):65–73

    Article  PubMed  CAS  Google Scholar 

  • Parke JL, Linderman RG, Black CH (1983) The role of ectomycorrhizas in drought tolerance of Douglas-fir seedlings. New Phytol 95:83–95

    Article  Google Scholar 

  • Percudani R, Trevisi A, Zambonelli A, Ottonello S (1999) Molecular phylogeny of truffles (Pezizales: Terfeziaceae, Tuberaceae) derived from nuclear rDNA sequence analysis. Mol Phylogenet Evol 13:169–180. doi:10.1006/mpev.1999.0638

    Article  PubMed  CAS  Google Scholar 

  • Pérez-García F, González-Benito ME (2006) Seed germination of five Helianthemum species: effect of temperature and presowing treatments. J Arid Environ 65:535–541

    Article  Google Scholar 

  • Roth-Bejerano N, Livne D, Kagan-Zur V (1990) Helianthemum-Terfezia relations in different growth media. New Phytol 114:235–238

    Article  Google Scholar 

  • Sánchez-Blanco MJ, Morales MA, Torrecillas A, Alarcón JJ (1998) Diurnal and seasonal osmotic potential changes in Lotus creticus creticus plants grown under saline stress. Plant Sci 136:1–10

    Article  Google Scholar 

  • Sánchez-Blanco MJ, Álvarez S, Navarro A, Bañón S (2009) Changes in leaf water relations, gas exchange, growth and flowering quality in potted geranium plants irrigated with different water regimes. J Plant Physiol 166:467–476. doi:10.1016/j.jplph.2008.06.015

    Article  PubMed  Google Scholar 

  • Serret MD, Trillas MI, Matas J, Araus JL (1996) Development of photoautotrophy and photoinhibition of Gardenia jasminoides plantlets during micropropagation. Plant Cell Tissue Organ Cult 45:1–16

    Article  CAS  Google Scholar 

  • Slama A, Fortas Z, Boudabous A, Neffati M (2010) Cultivation of an edible desert truffle (Terfezia boudieri Chatin). Afr J Microbiol Res 4(22):2350–2356

    Google Scholar 

  • Stamets P (2000) Growing gourmet and medicinal mushrooms. Ten Speed, Berkeley, CA

    Google Scholar 

  • Torrente P, Navarro-Ródenas A, Gutiérrez A, Morte A (2009) Micropropagacion de Helianthemum hirtum y micorrización in vitro con micelio de Terfezia claveryi. VIII Reunión de la Sociedad Española de Cultivos in Vitro de Tejidos Vegetales, Murcia, Spain

    Google Scholar 

  • Turgeman T, Ben Asher J, Roth-Bejerano N, Khagan-Zur V, Kapulnik Y, Sitrit Y (2011) Mycorrhizal association between the desert truffle Terfezia boudieri and Helianthemum sessiliflorum alters plant physiology and fitness to arid conditions. Mycorrhiza 21:623–630. doi:10.1007/s00572-011-0369-z

    Article  PubMed  CAS  Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Physiol Plant Mol Biol 40:19–38. doi:10.1146/annurev.pp.40.060189.000315

    Article  Google Scholar 

  • van den Driessche R (1987) Importance of current photosynthate to new root growth in planted conifer seedlings. Can J For Res 17:776–782

    Article  Google Scholar 

  • Xiao Y, Niu G, Kozai T (2011) Development and application of photoautotrophic micropropagation plant system. Plant Cell Tissue Organ Cult 105:149–158. doi:10.1007/s11240-010-9863-9

    Article  CAS  Google Scholar 

  • Yadav RS, Tarafdar JC (2003) Phytase and phosphatase producing fungi in arid and semiarid soils and their efficiency in hydrolyzing different organic P compounds. Soil Biol Biochem 35:1–7. doi:10.1016/S0038-0717(03)00089-0

    Article  Google Scholar 

  • Zardoya R (2005) Phylogeny and evolution of the major intrinsic protein family. Biol Cell 97(6):397–414. doi:10.1042/BC20040134

    Article  PubMed  CAS  Google Scholar 

  • Zaretsky M, Kagan-Zur V, Mills D, Roth-Bejerano N (2006) Analysis of mycorrhizal associations formed by Cistus incanus transformed root clones with Terfezia boudieri isolates. Plant Cell Rep 25:62–70. doi:10.1007/s00299-005-0035-z

    Article  PubMed  CAS  Google Scholar 

  • Zobayed SMA, Afreen F, Kubota C, Kozai T (2000) Evolution of culture vessel for micropropagation: from test tube to culture room. In: Kubota C, Chun C (eds) Transplant production in the 21st century. Kluwer Academic, Dordrecht, pp 3–19

    Google Scholar 

  • Zobayed SMA, Afreen F, Xiao Y, Kozai T (2004) Recent advancement in research on photoautotrophic micropropagation using large culture vessels with forced ventilation. In Vitro Cell Dev Biol Plant 40:450–458

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by projects CGL2011-29816 (Spanish Ministry of Science and Innovation) and 08812/PI/08 (Fundación Séneca, Region of Murcia, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asunción Morte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morte, A., Andrino, A., Honrubia, M., Navarro-Ródenas, A. (2012). Terfezia Cultivation in Arid and Semiarid Soils. In: Zambonelli, A., Bonito, G. (eds) Edible Ectomycorrhizal Mushrooms. Soil Biology, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33823-6_14

Download citation

Publish with us

Policies and ethics