Skip to main content

Bioremediation of Heavy Metals Using Metal Hyperaccumulator Plants

  • Chapter
  • First Online:
Fungi as Bioremediators

Part of the book series: Soil Biology ((SOILBIOL,volume 32))

  • 3213 Accesses

Abstract

Pollution due to heavy metals is a global environmental problem that has resulted from mining, industrial, agricultural and military practices (Nriagu and Pacyna. Nature 333(6169):134–139, 1988). Soil and water contamination by heavy metals is widespread in different parts of the world. Most of the pollutants accumulate in the food chain and threaten human health (Krämer. Curr Opin Biotechnol 16(2):133–141, 2005). A great interest has developed recently in the use of terrestrial plants as a green technology for the remediation of contaminated soils with toxic heavy metals, which may help to reduce or even reverse these pollution problems (Pence et al. Proc Natl Acad Sci USA 97:4956–4960, 2000). This developed a new specialised field of environmental biotechnology, termed phytoremediation, which uses plants to extract heavy metals from the soil and to concentrate them in the harvestable shoot tissue (Salt et al. Biotechnology (N Y) 13:468–474, 1995).

Hyperaccumulator plant species has great potential in bioremediation of heavy metals. Hyperaccumulator species, can accumulate heavy metals in their shoots or roots till several thousands compared to the non-accumulator plants (Reeves and Brooks. J Geochem Explor 18:275–283, 1983; McGrath et al. The potential for the use of metal-accumulating plants for the in situ decontamination of metal-polluted soils. In: Eijsackers, Hamers (eds) Integrated soil and sediment research: a basis for proper protection. Kluwer, Dordrecht, pp 673–677, 1993) and 2,700 μg Cd g−1 dw (Lombi et al. New Phytol 145:11–20, 2000). These species may play a major role in phytoremediation in the contaminated sites. Further improvement of these plants through genetic engineering would help in developing cost-effective and efficient bioremediation as a green technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam MZ, Fakhrul-Razi A, Molla AH (2003) Biosolids accumulation and biodegradation of domestic wastewater treatment plant sludge by developed liquid state bioconversion process using a batch fermenter. Water Res 37:3569–3578

    Article  PubMed  CAS  Google Scholar 

  • Arrivault S, Senger T, Kramer U (2006) The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J 46(5):861–879

    Article  PubMed  CAS  Google Scholar 

  • Assunção AGL, Martins PDC, De Folter S, Vooijs R, Schat H, Aarts MGM (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 24(2):217–226

    Article  Google Scholar 

  • Assunção AGL, Schat H, Aarts MGM (2003) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159(2):351–360

    Article  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves DR, Smith JAC (2000) Metal hyperaccumulator plants: a review of the Ecology and Physiology of the Biological Resource for Phytoremediation of Metal-Polluted Soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soils & water. CRC, Boca Raton, FL, pp 171–188

    Google Scholar 

  • Blaudez D, Kohler A, Martin F, Sanders D, Chalot M (2003) Poplar metal tolerance protein 1 confers zinc tolerance and is an oligomeric vacuolar zinc transporter with an essential leucine zipper motif. Plant Cell 15(12):2911–2928

    Article  PubMed  CAS  Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, Toronto, p 303

    Google Scholar 

  • Bloss T, Clemens S, Nies DH (2002) Characterization of the ZAT1p zinc transporter from Arabidopsis thaliana in microbial model organisms and reconstituted proteoliposomes. Planta 214(5):783–791

    Article  PubMed  CAS  Google Scholar 

  • Brown S, Chaney R, Angle J, Baker A (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci Soc Am J 59:125–133

    Article  CAS  Google Scholar 

  • Bughio HR, Soomro AM, Baloch AW, Javed MA, Khan IA (2002) Yield potential of aromatic rice mutants/varieties in different ecological zones of Sindh. Asian J Plant Sci 1:439–440

    Article  Google Scholar 

  • Burton KW, Morgan E, Roig A (1984) The influence of heavy metals on the growth of sitka-spruce in South Wales forests. II green house experiments. Plant Soil 78:271–282

    Article  CAS  Google Scholar 

  • Chao Y, Fu D (2004) Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter, ZitB. J Biol Chem 279(13):12043–12050

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Palmgren MG, Kramer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7(7):309–315

    Article  PubMed  CAS  Google Scholar 

  • Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14(6):1347–1357

    Article  PubMed  CAS  Google Scholar 

  • Cousins RJ, McMahon RJ (2000) Integrative aspects of zinc transporters. J Nutr 130:1384S–1387S

    PubMed  CAS  Google Scholar 

  • Delhaize E, Kataoka T, Hebb DM, White RG, Ryan PR (2003) Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell 15(5):1131–1142

    Article  PubMed  CAS  Google Scholar 

  • Desbrosses-Fonrouge AG, Voigt K, Schroder A, Arrivault S, Thomine S, Kramer U (2005) Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. FEBS Lett 579(19):4165–4174

    Article  PubMed  CAS  Google Scholar 

  • Dräger DB, Voigt K, Kramer U (2005) Short transcript-derived fragments from the metal hyperaccumulator model species Arabidopsis halleri. Z Naturforsch C 60(3–4):172–178

    PubMed  Google Scholar 

  • Eckhardt U, Mas Marques A, Buckhout TJ (2001) Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Mol Biol 45(4):437–448

    Article  PubMed  CAS  Google Scholar 

  • Eide DJ (1998) The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu Rev Nutr 18:441–469

    Article  PubMed  CAS  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 93(11):5624–5628

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola RA, Fink GR, Hirschi KD (2002) Genetic manipulation of vacuolar proton pumps and transporters. Plant Physiol 129(3):967–973

    Article  PubMed  CAS  Google Scholar 

  • Grotz N, Guerinot ML (2002) Limiting nutrients: an old problem with new solutions? Curr Opin Plant Biol 5(2):158–163

    Article  PubMed  CAS  Google Scholar 

  • Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA 95(12):7220–7224

    Article  PubMed  CAS  Google Scholar 

  • Guerinot ML (2000) To improve nutrition for the world’s population. Science 288(5473):1966–1967

    Article  PubMed  CAS  Google Scholar 

  • Guffanti AA, Wei Y, Rood SV, Krulwich TA (2002) An antiport mechanism for a member of the cation diffusion facilitator family: divalent cations efflux in exchange for K+ and H+. Mol Microbiol 45:145–153

    Article  PubMed  CAS  Google Scholar 

  • Hampp R, Ziegler H, Ziegler I (1973) Influence of lead ions on the activity of enzymes of reductive pentose phosphate pathway. Biochem Physiol Pflanzen 164:588–595

    Google Scholar 

  • Heath S, Southworth D, D’Allura JA (1997) Localization of nickel in epidermal subsidiary cells of leaves of Thlaspi montanum var. siskiouense (Brassicaceae) using energy-dispersive X-ray micro- analysis. Int J Plant Sci 158:184–188

    Article  CAS  Google Scholar 

  • Henriques R, Jasik J, Klein M, Martinoia E, Feller U, Schell J, Pais MS, Koncz C (2002) Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Mol Biol 50(4–5):587–597

    Article  PubMed  CAS  Google Scholar 

  • Jing Y, He Z, Yang X (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207

    Article  PubMed  CAS  Google Scholar 

  • Johnson MS, Eaton JW (1980) Environmental contamination through residual trace metal dispersal from a derelict lead-zinc mine. J Environ Qual 9:175–179

    Article  CAS  Google Scholar 

  • Kobae Y, Uemura T, Sato MH, Ohnishi M, Mimura T, Nakagawa T, Maeshima M (2004) Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Physiol 45(12):1749–1758

    Article  PubMed  CAS  Google Scholar 

  • Kohler A, Delaruelle C, Martin D, Encelot N, Martin F (2003) The poplar root transcriptome: analysis of 7000 expressed sequence tags. FEBS Lett 542(1–3):37–41

    Article  PubMed  Google Scholar 

  • Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40(1):37–44

    Article  PubMed  CAS  Google Scholar 

  • Krämer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16(2):133–141

    Article  PubMed  Google Scholar 

  • Krämer U, Smith RD, Wenzel WW, Raskin I, Salt DE (1997) The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Halacsy. Plant Physiol 115(4):1641–1650

    PubMed  Google Scholar 

  • Küpper H, Zhao FJ, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119:305–311

    Article  Google Scholar 

  • Lasat MM, Baker A, Kochian LV (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiol 112(4):1715–1722

    PubMed  CAS  Google Scholar 

  • Lasat MM, Baker AJ, Kochian LV (1998) Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiol 118:875–883

    Article  PubMed  CAS  Google Scholar 

  • Lasat MM, Pence NS, Garvin DF, Ebbs SD, Kochian LV (2000) Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Bot 51:71–79

    Article  PubMed  CAS  Google Scholar 

  • Li L, Kaplan J (1998) Defects in the yeast high affinity iron transport system result in increased metal sensitivity because of the increased expression of transporters with a broad transition metal specificity. J Biol Chem 273:22181–22187

    Article  PubMed  CAS  Google Scholar 

  • Li L, Kaplan J (2001) The yeast gene MSC2, a member of the cation diffusion facilitator family, affects the cellular distribution of zinc. J Biol Chem 276:5036–5043

    Article  PubMed  CAS  Google Scholar 

  • Ling HQ, Bauer P, Bereczky Z, Keller B, Ganal M (2002) The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proc Natl Acad Sci USA 99:13938–13943

    Article  PubMed  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunhan SJ, McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol 145:11–20

    Article  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual 30:1919–1926

    Article  PubMed  CAS  Google Scholar 

  • MacDiarmid CW, Milanick MA, Eide DJ (2002) Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae. J Biol Chem 277:39187–39194

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Function of mineral nutrients: micronutrients. In: Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  Google Scholar 

  • McGrath SP, Sidoli CMD, Baker AJM, Reeves RD (1993) The potential for the use of metal-accumulating plants for the in situ decontamination of metal-polluted soils. In: Eijsackers HJP, Hamers T (eds) Integrated soil and sediment research: a basis for proper protection. Kluwer, Dordrecht, pp 673–677

    Chapter  Google Scholar 

  • McGrath SA, Esquela AF, Lee SJ (1995) Oocyte-specific expression of growth/differentiation factor-9. Mol Endocrinol 9:131–136

    Article  PubMed  CAS  Google Scholar 

  • Miyabe S, Izawa S, Inoue Y (2001) The Zrc1 is involved in zinc transport system between vacuole and cytosol in Saccharomyces cerevisiae. Biochem Biophys Res Commun 282(1):79–83

    Article  PubMed  CAS  Google Scholar 

  • Mizuno T, Usui K, Horie K, Nosaka S, Mizuno N, Obata H (2005) Cloning of three ZIP/Nramp transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+-transport abilities. Plant Physiol Biochem 43:793–801

    Article  PubMed  CAS  Google Scholar 

  • Moreau S, Thomson RM, Kaiser BN, Trevaskis B, Guerinot ML, Udvardi MK, Puppo A, Day DA (2002) GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. J Biol Chem 277:4738–4746

    Article  PubMed  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333(6169):134–139

    Article  PubMed  CAS  Google Scholar 

  • Paulsen IT, Saier MH Jr (1997) A novel family of ubiquitous heavy metal ion transport proteins. J Membr Biol 156:99–103

    Article  PubMed  CAS  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97:4956–4960

    Article  PubMed  CAS  Google Scholar 

  • Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc Natl Acad Sci USA 98:9995–10000

    Article  PubMed  CAS  Google Scholar 

  • Prasad DDK, Prasad ARK (1987) Altered δ-amino laevulinic acid metabolism by lead and mercury in germinating seedlings of Bajra (Pennisetum typhoideum). J Plant Physol 127:241–249

    Article  CAS  Google Scholar 

  • Radisky D, Kaplan J (1999) Regulation of transition metal transport across the yeast plasma membrane. J Biol Chem 274:4481–4484

    Article  PubMed  CAS  Google Scholar 

  • Reeves RD, Brooks RR (1983) European species of Thlaspi L. as indicators of nickel and zinc. J Geochem Explor 18:275–283

    Article  CAS  Google Scholar 

  • Rogers EE, Eide DJ, Guerinot ML (2000) Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci USA 97:12356–12360

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NP, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology (N Y) 13:468–474

    Article  CAS  Google Scholar 

  • Schat H, Llugany M, Bernhard R (2000) Metal-specific patterns of tolerance, uptake, and transport of heavy metals in hyperaccumulating and non-hyperaccumulating metallophytes. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soils & water. CRC, Boca Raton, FL, pp 171–188

    Google Scholar 

  • Shen ZG, Zhao FJ, McGrath SP (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ 20:898–906

    Article  CAS  Google Scholar 

  • Simmons RW, Pongasakul P, Saiyasitpanich D, Klinphoklap S (2005) Elevated levels of cadmium and zinc in paddy soils and elevated levels of cadmium in rice grain downstream of a zinc mineralized area in Thailand: implication for public health. Environ Geochem Health 27:501–511

    Article  PubMed  CAS  Google Scholar 

  • Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    Article  PubMed  CAS  Google Scholar 

  • Tu Shu I, Brouillette JN (1987) Metal ion inhibition of corn root plasma membrane ATPase. Phytochemistry 26:65–69

    Google Scholar 

  • Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    Article  PubMed  CAS  Google Scholar 

  • Van de Mortel JE, Almar Villanueva L, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Loren V, van Themaat E, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Phys 142:1127–1147

    Article  Google Scholar 

  • van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JA, Hooykaas PJ (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055

    Article  PubMed  Google Scholar 

  • Varotto C, Maiwald D, Pesaresi P, Jahns P, Salamini F, Leister D (2002) The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. Plant J 31:589–599

    Article  PubMed  CAS  Google Scholar 

  • Vázquez MD, Lopez J, Carballeira A (1999) Uptake of heavy metals to the extracellular and intracellular compartments in three species of aquatic bryophyte. Ecotoxicol Environ Saf 44:12–24

    Article  PubMed  Google Scholar 

  • Vert G, Briat JF, Curie C (2001) Arabidopsis IRT2 gene encodes a root-periphery iron transporter. Plant J 26:181–189

    Article  PubMed  CAS  Google Scholar 

  • Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Minasov G, Shoichet BK (2002) The structural bases of antibiotic resistance in the clinically derived mutant beta-lactamases TEM-30, TEM-32, and TEM-34. J Biol Chem 277:32149–32156

    Article  PubMed  CAS  Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126

    Article  PubMed  CAS  Google Scholar 

  • Wintz H, Fox T, Wu YY, Feng V, Chen W, Chang HS, Zhu T, Vulpe C (2003) Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J Biol Chem 278:47644–47653

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Eide D (1996) The yeast ZRT1 gene encodes the zinc transporter protein of a high-affinity uptake system induced by zinc limitation. Proc Natl Acad Sci USA 93:2454–2458

    Article  PubMed  CAS  Google Scholar 

  • Zhao FJ, Hamon RE, Lombi E, McLaughlin MJ, McGrath SP (2002) Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 53(368):535–543

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangita Talukdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Talukdar, S., Bhardwaj, S. (2013). Bioremediation of Heavy Metals Using Metal Hyperaccumulator Plants. In: Goltapeh, E., Danesh, Y., Varma, A. (eds) Fungi as Bioremediators. Soil Biology, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33811-3_21

Download citation

Publish with us

Policies and ethics