Skip to main content

Stability-Based Model Selection for High Throughput Genomic Data: An Algorithmic Paradigm

  • Conference paper
Artificial Immune Systems (ICARIS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7597))

Included in the following conference series:

Abstract

Clustering is one of the most well known activities in scientific investigation and the object of research in many disciplines, ranging from Statistics to Computer Science. In this beautiful area, one of the most difficult challenges is the model selection problem, i.e., the identification of the correct number of clusters in a dataset. In the last decade, a few novel techniques for model selection, representing a sharp departure from previous ones in statistics, have been proposed and gained prominence for microarray data analysis. Among those, the stability-based methods are the most robust and best performing in terms of prediction, but the slowest in terms of time. Unfortunately, this fascinating and classic area of statistics as model selection, with important practical applications, has received very little attention in terms of algorithmic design and engineering. In this paper, in order to partially fill this gap, we highlight: (A) the first general algorithmic paradigm for stability-based methods for model selection; (B) a novel algorithmic paradigm for the class of stability-based methods for cluster validity, i.e., methods assessing how statistically significant is a given clustering solution; (C) a general algorithmic paradigm that describes heuristic and very effective speed-ups known in the Literature for stability-based model selection methods.

An extended version of this manuscript appears in [20] and it is presented here as invited contribution to Bio- & Immune- Inspired Algorithms and Models for Multi-Level Complex Systems Workshop within ICARIS 2012.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alizadeh, A., Eisen, M., Davis, R., Ma, C., Lossos, I., Rosenwald, A., Boldrick, J., Sabet, H., Tran, T., Yu, X., Powell, J., Yang, L., Marti, G., Moore, T., Hudson, J.J., Lu, L., Lewis, D., Tibshirani, R., Sherlock, G., Chan, W., Greiner, T., Weisenburger, D., Armitage, J., Warnke, R., Levy, R., Wilson, W., Grever, M., Byrd, J., Botstein, D., Brown, P., Staudt, L.: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)

    Article  Google Scholar 

  2. Alon, U., Barkai, N., Notterman, D., Gish, K., Ybarra, S., Mack, D., Levine, A.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences of the United States of America 96, 6745–6750 (1999)

    Article  Google Scholar 

  3. Andreopoulos, B., An, A., Wang, X., Schroeder, M.: A roadmap of clustering algorithms: finding a match for a biomedical application. Briefings in Bioinformatics 10(3), 297–314 (2009)

    Article  Google Scholar 

  4. Ben-David, S., von Luxburg, U., Pál, D.: A Sober Look at Clustering Stability. In: Lugosi, G., Simon, H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 5–19. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Ben-Hur, A., Elisseeff, A., Guyon, I.: A stability based method for discovering structure in clustering data. In: Seventh Pacific Symposium on Biocomputing, ISCB, pp. 6–17 (2002)

    Google Scholar 

  6. Benesty, J., Morgan, D., Sondhi, M.: A better understanding and an improved solution to the problems of stereophonic acoustic echo cancellation. In: ICASSP 1997: Proceedings of the 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 1997), vol. 1, p. 303. IEEE Computer Society (1997)

    Google Scholar 

  7. Bertoni, A., Valentini, G.: Model order selection for bio-molecular data clustering. BMC Bioinformatics 8 (2007)

    Google Scholar 

  8. Bittner, M., Meltzer, P., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., Radmacher, M., Simon, R., Yakhini, Z., Ben-Dor, A., Sampas, N., Dougherty, E., Wang, E., Marincola, F., Gooden, C., Lueders, J., Glatfelter, A., Pollock, P., Carpten, J., Gillanders, E., Leja, D., Dietrich, K., Beaudry, C., Berens, M., Alberts, D., Sondak, V.: Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406, 536–540 (2000)

    Article  Google Scholar 

  9. Bock, H.: On some significance tests in cluster analysis. Journal of Classification 2, 77–108 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Breckenridge, J.: Replicating cluster analysis: Method, consistency, and validity. Multivariate Behavioral Research 24(2), 147–161 (1989)

    Article  Google Scholar 

  11. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Chen, J., Lonardi, S.: Biological Data Mining. Chapman & Hall (2009)

    Google Scholar 

  13. D’haeseleer, P.: How does gene expression cluster work? Nature Biotechnology 23, 1499–1501 (2006)

    Article  Google Scholar 

  14. Dudoit, S., Fridlyand, J.: A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biology 3 (2002)

    Google Scholar 

  15. Dudoit, S., Fridlyand, J.: Bagging to improve the accuracy of a clustering procedure. Bioinformatics 19(9), 1090–1099 (2003)

    Article  Google Scholar 

  16. Efron, B., Tibshirani, R.: An Introduction to the Bootstrap. Chapman & Hall, London (1993)

    MATH  Google Scholar 

  17. Giancarlo, R., Scaturro, D., Utro, F.: Computational cluster validation for microarray data analysis: experimental assessment of Clest, Consensus Clustering, Figure of Merit, Gap Statistics and Model Explorer. BMC Bioinformatics 9, 462 (2008)

    Article  Google Scholar 

  18. Giancarlo, R., Scaturro, D., Utro, F.: Statistical indices for computational and data driven class discovery in microarray data. In: Chen, J.Y., Lonardi, S. (eds.) Biological Data Mining, pp. 295–335. CRC Press, San Francisco (2009)

    Chapter  Google Scholar 

  19. Giancarlo, R., Utro, F.: Speeding up the Consensus Clustering methodology for microarray data analysis. Algorithms for Molecular Biology 6, 1 (2011)

    Article  Google Scholar 

  20. Giancarlo, R., Utro, F.: Algorithmic paradigms for stability-based cluster validity and model selection statistical methods, with applications to microarray data analysis. Theoretical Computer Science 428, 58–79 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeeck, M., Mesirov, J., Coller, H., Loh, M., Downing, J., Caligiuri, M., Bloomfield, C., Lander, E.: Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286(5439 ), 531–537 (1999)

    Article  Google Scholar 

  22. Gordon, A.: Null models in cluster validation. In: From Data to Knowledge: Theoretical and Practical Aspects of Classification, pp. 32–44. Springer (1996)

    Google Scholar 

  23. Handl, J., Knowles, J., Kell, D.: Computational cluster validation in Post-genomic data analysis. Bioinformatics 21(15), 3201–3212 (2005)

    Article  Google Scholar 

  24. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer (2003)

    Google Scholar 

  25. Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  26. Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. Contemp. Math. 26, 189–206 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kerr, M., Churchill, G.: Bootstrapping cluster analysis: Assessing the reliability of conclusions from microarray experiments. PNAS 98, 8961–8965 (2000)

    Article  Google Scholar 

  28. Kraus, J., Kestler, H.: A highly efficient multi-core algorithm for clustering extremely large datasets. BMC Bioinformatics 11 (2010)

    Google Scholar 

  29. Levine, E., Domany, E.: Resampling method for unsupervised estimation of cluster validity. Neural Computation 13, 2573–2593 (2001)

    Article  MATH  Google Scholar 

  30. McShane, L., Radmacher, M., Freidlin, B., Yu, R., Li, M.C., Simon, R.: Methods for assessing reproducibility of clustering patterns observed in analyses of microarray data. Bioinformatics 18, 1462–1469 (2002)

    Article  Google Scholar 

  31. Monti, S., Tamayo, P., Mesirov, J., Golub, T.: Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Machine Learning 52, 91–118 (2003)

    Article  MATH  Google Scholar 

  32. Perou, C., Jeffrey, S., van de Rijn, M., Rees, C., Eisen, M., Ross, D., Pergamenschikov, A., Williams, C., Zhu, S., Lee, J., Lashkari, D., Shalon, D., Brown, P., Botstein, D.: Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proceedings of the National Academy of Sciences of the United States of America 96, 9212–9217 (1999)

    Article  Google Scholar 

  33. Pollack, J., Perou, C., Alizadeh, A., Eisen, M., Amd, C.F., Williams, A.P., Jeffrey, S., Botstein, D., Brown, P.: Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genetics 23, 41–46 (1999)

    Article  Google Scholar 

  34. Raviv, Y., Intrator, N.: Bootstrapping with noise: An effective regularization technique. Connection Science 8, 355–372 (1996)

    Article  Google Scholar 

  35. Ross, D., Scherf, U., Eisen, M., Perou, C., Spellman, P., Iyer, V., Jeffrey, S., van de Rijn, M., Walthama, M., Pergamenschikov, A., Lee, J., Lashkari, D., Shalon, D., Myers, T., Weistein, J., Botstein, D., Brown, P.: Systematic variation in gene expression patterns in human cancer cell lines. Nature Genetics 24, 227–235 (2000)

    Article  Google Scholar 

  36. Roth, V., Lange, T., Braun, M., Buhmann, J.: A resampling approach to cluster validation. In: Proceedings 15th Symposium in Computational Statistics, pp. 123–128 (2002)

    Google Scholar 

  37. Sarle, W.: Cubic clustering criterion. Tech. rep., SAS (1983)

    Google Scholar 

  38. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a dataset via the gap statistics. Journal Royal Statistical Society B 2, 411–423 (2001)

    Article  MathSciNet  Google Scholar 

  39. Utro, F.: Algorithms for internal validation clustering measures in the Post-genomic era, Doctoral Dissertation, University of Palermo (2011), http://arxiv.org/abs/1102.2915v1

  40. Valentini, G.: Mosclust: a software library for discovering significant structures in bio-molecular data. Bioinformatics 23, 387–389 (2007)

    Article  MathSciNet  Google Scholar 

  41. Wolfinger, R., Gibson, G., Wolfinger, E., Bennet, L., Hamadeh, H., Bushel, C., Paules, R.: Assessing gene significance from cDNA microarray expression data via mixed models. Journal of Computational Biology, 625–637 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giancarlo, R., Utro, F. (2012). Stability-Based Model Selection for High Throughput Genomic Data: An Algorithmic Paradigm. In: Coello Coello, C.A., Greensmith, J., Krasnogor, N., Liò, P., Nicosia, G., Pavone, M. (eds) Artificial Immune Systems. ICARIS 2012. Lecture Notes in Computer Science, vol 7597. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33757-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33757-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33756-7

  • Online ISBN: 978-3-642-33757-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics