Skip to main content

Importance of Genomic Imprinting in the Evolution and Development of the Maternal Brain

  • Chapter
  • First Online:
Multiple Origins of Sex Differences in Brain

Part of the book series: Research and Perspectives in Endocrine Interactions ((RPEI))

Abstract

It was the French reproductive biologist, Alfred Jost (1970), who proposed that mammalian sexual differentiation is biased in a female direction and masculine characteristics are imposed on an essentially female life plan. The reproductive success of mammals places a considerable burden of time and energy on the matriline, with some 95 % of female adult life committed to pregnancy, lactation and maternal care. Viviparity has thus provided a major selection pressure on the matriline in the evolution of these events and with particular emphasis on the placenta and hypothalamus. Increased maternal feeding, maternal care, suspension of fertility and sexual behaviour, parturition and milk provision are all integral to hypothalamic function and have evolved under the influence of the placental hormones to meet the demands of the developing infant (Keverne 2006). Viviparity has also introduced a new dimension to evolutionary genetics in providing the co-existence and continuity for three generations of matrilineal genomes (i.e., mother, developing offspring and developing oocytes) in one individual (Keverne 2011). Also unique to the mammalian matriline has been the evolution of epigenetic marks (imprint control regions) which are heritable and undergo reprogramming to regulate gene expression according to parent of origin. This imprinting of autosomal genes (genomic imprinting) plays a significant role in mammalian development, particularly development of the placenta and hypothalamus (Keverne 2009). Indeed, a number of imprinted genes are co-expressed in the placenta and hypothalamus and are important for the co-adapted functioning of these structures. Such transgenerational co-adaptation ensures the foetal hypothalamus is genetically and epigenetically programmed for ensuring optimal maternal care and nurturing (Broad and Keverne 2011). In this way the foetus not only controls its own destiny via the placenta but also that of the next generation via the developing hypothalamus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen ND, Logan K, Drage DJ, Norris ML, Keverne EB (1995) Distribution of parthenogenetic cells in the mouse brain and their influence on brain development and behaviour. Proc Natl Acad Sci USA 92:10782–10786

    Article  PubMed  CAS  Google Scholar 

  • Barsoum IB, Yao HH (2010) Fetal Leydig cells: progenitor cell maintenance and differentiation. J Androl 31:11–15

    Article  PubMed  CAS  Google Scholar 

  • Baum MJ (2009a) New evidence that an epigenetic mechanism mediates testosterone-dependent brain masculinzation. Endocrinology 150:3980–3982

    Article  PubMed  CAS  Google Scholar 

  • Baum MJ (2009b) Sexual differentiation of pheromone processing: links to male-typical mating behavior in partner preference. Horm Behav 55:579–588

    Article  PubMed  CAS  Google Scholar 

  • Bortolin-Cavaille ML, Dance M, Weber M, Cavaille J (2009) C19MC microRNAs are processed from introns of large Pol-II non-protein-coding transcripts. Nucleic Acids Res 37:3464–3473

    Article  PubMed  CAS  Google Scholar 

  • Bourc’his D, Proudhon C (2008) Sexual dimorphism in parental imprint ontogeny and contribution to embryonic development. Mol Cell Endocrinol 282:87–94

    Article  PubMed  Google Scholar 

  • Broad KD, Keverne EB (2011) Placental protection of the foetal brain during short term food deprivation. Proc Natl Acad Sci USA 108:15237–15241

    Article  PubMed  CAS  Google Scholar 

  • Broad KD, Curley JP, Keverne EB (2006) Mother-infant bonding and the evolution of mammalian social relationships. Phil Trans Roy Soc B 361:2199–2214

    Article  CAS  Google Scholar 

  • Broad KD, Curley JP, Keverne EB (2009) Increased apoptosis during neonatal brain development underlies the adult behavioral deficits seen in mice lacking a functional paternally expressed gene 3 (Peg3). Dev Neurobiol 69:314–325

    Article  PubMed  CAS  Google Scholar 

  • Canavan SV, Mayes LC, Treloar HB (2001) Changes in maternal gene expression in olfactory circuits in the immediate postpartum period. Front Psychiatry 2:40

    Google Scholar 

  • Carter CS, Keverne EB (2002) The neurobiology and social affiliation and pair bonding. In: Pfaff DW, Arnold AP, Etgen AM, Fahrbach SE, Rubin RT (eds) Hormones, brain and behaviour. Academic, San Diego, pp 299–337

    Chapter  Google Scholar 

  • Chen HL, Ge RS, Zirkin BR (2009) Leydig cells: from stem cells to aging. Mol Cell Endocrinol 206:9–26

    Article  Google Scholar 

  • Curley JP, Keverne EB (2005) Genes, brains and mammalian social bonds. Trends Ecol Evol 20:561–567

    Article  PubMed  Google Scholar 

  • Curley JP, Pinnock SB, Dickson SL, Thresher R, Miyoshi N, Surani MA, Keverne EB (2005) Increased body fat in mice with a targeted mutation of the paternally expressed imprinted gene Peg3. FASEB J 19:1302–1304

    PubMed  CAS  Google Scholar 

  • Falkowski PG, Katz ME, Milligan AJ, Fennel K, Cramer BS, Aubrey MP, Berner RA, Novacek MJ, Zapol WM (2005) The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science 309:2202–2204

    Article  PubMed  CAS  Google Scholar 

  • Ferguson-Smith AC (2011) Genomic imprinting: the mergence of an epigenetic paradigm. Nat Rev Genet 12:565–575

    Article  PubMed  CAS  Google Scholar 

  • Ferron SR, Charalambous M, Radford E, McEwan K, Wildner HEH, Morante-Redolat JM, Laborda J, Guillemot F, Bauer SR, Farinas I, Fersuson-Smith AC (2011) Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature 475:381–385

    Article  PubMed  CAS  Google Scholar 

  • Forger NG (2005) Cell death and sexual differentiation of the nervous system. Neuroscience 138:929–938

    Article  PubMed  Google Scholar 

  • Forger NG, Rosen GJ, Waters EM, Jacob D, Simerly RB, de Vries GJ (2004) Deletion of Bax eliminates sex differences in the mouse forebrain. Proc Natl Acad Sci USA 101:13666–13671

    Article  PubMed  CAS  Google Scholar 

  • Gebert C, Kunkel D, Grinberg A, Pfeifer K (2010) H19 imprinting control region methylation requires an imprinted environment only in the male germ line. Mol Cell Biol 30:1108–1115

    Article  PubMed  CAS  Google Scholar 

  • Gotsiridze T, Kang N, Jacob D, Forger NG (2007) Development of sex differences in the principal nucleus of the bed nucleus of the stria terminalis of mice: role of Bax-dependent cell death. Dev Neurobiol 67:355–362

    Article  PubMed  CAS  Google Scholar 

  • Gregg C, Zhang C, Weissbourd B, Lou S, Schroth GP, Haig D, Dulac C (2010) High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 329:643–648

    Article  PubMed  CAS  Google Scholar 

  • Haig D (1992) Genomic imprinting and the theory of parent-offspring conflict. Semin Devel Biol 3:153–160

    Google Scholar 

  • Harris A, Seckl J (2011) Glucocorticoids, prenatal stress and the programming of disease. Horm Behav 59:279–289

    Article  PubMed  CAS  Google Scholar 

  • Hasen NS, Gammie SC (2009) Trpc2 gene impacts on maternal aggression, accessory olfactory bulb anatomy and brain activity. Genes Brain Behav 8:639–649

    Article  PubMed  CAS  Google Scholar 

  • Hiby SE, Lough M, Keverne EB, Surani MA, Loke YW, King A (2001) Paternal monoallelic expression of PEG3 in the human placenta. Hum Mol Genet 10:1093–1100

    Article  PubMed  CAS  Google Scholar 

  • Horsthemke B, Nazlican H, Husing J, Klein-Hitpass L, Claussen U, Michel S, Lich C, Gillesen-Kaesbach G, Buiting K (2003) Somatic mosaiism for maternal uniparental disomy 15 in a girl with Prader-Willi syndrome: confirmation by cell cloning and identification of candidate downstream genes. Hum Mol Genet 12:2723–2732

    Article  PubMed  CAS  Google Scholar 

  • Jost A (1970) Hormonal factors in the sex differentiation of the mammalian foetus. Philos Trans Roy Soc B 259:119–130

    Article  CAS  Google Scholar 

  • Kashimada K, Koopman P (2010) Sry: the master switch in mammalian sex determination. Development 137:3921–3930

    Article  PubMed  CAS  Google Scholar 

  • Keverne EB (2006) Trophoblast regulation of maternal endocrine function and behaviour. In: Moffett A, Loke C, McLaren A (eds) Biology and pathology of trophoblast. Cambridge University Press, New York, pp 148–163

    Chapter  Google Scholar 

  • Keverne EB (2009) Monoallelic gene expression and mammalian evolution. Bioessays 31:1318–1326

    Article  PubMed  CAS  Google Scholar 

  • Keverne EB (2011) Epigenetics and brain evolution. Epigenomics 3:193–191

    Article  Google Scholar 

  • Keverne EB, Fundele R, Narashimha M, Barton SC, Surani MA (1996a) Genomic imprinting and the differential roles of parental genomes in brain development. Dev Brain Res 92:91–100

    Article  CAS  Google Scholar 

  • Keverne EB, Martel FL, Nevison CM (1996b) Primate brain evolution: genetic and functional considerations. Proc R Soc Lond B 262:689–696

    Article  Google Scholar 

  • Kurukuti S, Tiwari VK, Tavoosidana G, Pugacheva E, Murrell A, Zhao Z, Lobanenkov V, Reik W, Ohlsson R (2006) CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci USA 103:10684–10689

    Article  PubMed  CAS  Google Scholar 

  • Lonstein JS, Rood BD, De Vries GJ (2002) Parental responsiveness is feminized after neonatal castration in virgin male prairie voles, but is not masculinized by perinatal testosterone in virgin females. Horm Behav 41:80–87

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki H, Okamura E, Fakumizu A, Tanimoto K (2010) CTCF binding is not the epigenetic mark that establishes post-fertilization methylation imprinting in the transgenic H19 ICR. Hum Mol Genet 19:1190–1198

    Article  PubMed  CAS  Google Scholar 

  • McCarthy MM, Auger AP, Bale TL, De Vries GJ, Dunn GA, Forger NG, Murray EK, Nugent BM, Schwarz JM, Wilson ME (2009) The epigenetics of sex differences in the brain. J Neurosci 29:12815–12823

    Article  PubMed  CAS  Google Scholar 

  • Mess A, Carter AM (2007) Evolution of the placenta during the early radiation of placental mammals. Comp Biochem Physiol A Mol Integr Physiol 148:769–779

    Article  PubMed  Google Scholar 

  • Pozniak CD, Radinvic S, Yang A, McKeon F, Kaplan DR, Miller FD (2000) An anti-apoptopic role for the p53 family member, p73, during developmental neuron death. Science 289:304–306

    Article  PubMed  CAS  Google Scholar 

  • Renfree MB (2010) Review: Marsupials: placental mamals with a difference. Placenta 31(Suppl):S21–S26

    Article  PubMed  Google Scholar 

  • Rizzoti K, Brunelli S, Carmignac D, Thomas PQ, Robinson IC, Lovell-Badge R (2004) SOX3 is required during the formation of the hypothalamo-pituitary axis. Nat Genet 36:247–255

    Article  PubMed  CAS  Google Scholar 

  • Saitoh S, Wada T, Okajima M, Takano K, Sudo A, Niikawa N (2005) Uniparental disomy and imprinting defects in Japanese patients with Angelman syndrome. Brain Dev 27:389–391

    Article  PubMed  Google Scholar 

  • Sato Y, Shinka Y, Sakamoto K, Ewis AA, Nakahori Y (2010) The male-determining gene SRY is a hybrid of DGCR8 and SOX3, and is regulated by the transcription CP2. Mol Cell Biochem 337:267–275

    Article  PubMed  CAS  Google Scholar 

  • Schultz RM, Proudhon C, Bestor TH, Woodfine K, Lin CS, Lin SP, Prissette M, Oakey RJ, Bourc’his C (2010) The parental non-equivalence of imprinting control regions during mammalian development and evolution. PLoS Genet 6:e1001214

    Article  Google Scholar 

  • Sekido R, Lovell-Badge R (2008) Sex determination and SRY: down to a wink and a nudge? Trends Genet 25:19–29

    Article  PubMed  Google Scholar 

  • Semaan SJ, Murray EK, Poling MC, Dhamija S, Forger NG, Kauffman AS (2010) BAX-dependent and BAX-independent regulation of Kiss1 neuron development in mice. Endocrinology 151:5807–5817

    Article  PubMed  CAS  Google Scholar 

  • Sferruzzi-Perri AN, Vaughan OR, Coan PM, Suciu MC, Darbyshire R, Constancia M, Burton GJ, Fowden AL (2011) Placental-specific Igf2 deficiency alters developmental adaptations to undernutrition in mice. Endocrinology 152:3202–3212

    Article  PubMed  CAS  Google Scholar 

  • Stowers L, Holy TE, Meister M, Dulac C, Koentges G (2002) Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295:1493–1500

    Article  PubMed  CAS  Google Scholar 

  • Surani MA, Barton SC, Norris ML (1984) Roles of paternal nd maternal genomes in mouse development. Nature 311:374–376

    Article  PubMed  Google Scholar 

  • Vaiman D, Mondon F, Garces-Duran A, Mignot TM, Robert B, Rebourcet R, Jammes H, Chelbi ST, Quentin F, Marceau G, Sapin V, Danan JL, Rigourd V, Carbonne B, Ferre F (2005) Hypoxia-activated genes from early placenta are elevated in preeclampsia, but not in intra-uterine growth retardation. BMC Genomics 6:111

    Article  PubMed  Google Scholar 

  • Veitia RA (2010) FOXL2 versus SOX9: a lifelong “battle of the sexes”. Bio Essays 32:375–380

    CAS  Google Scholar 

  • Wallis MC, Waters PD, Graves JA (2008) Sex determination in mammals - before and after the evolution of SRY. Cell Mol Life Sci 65:3182–3195

    Article  PubMed  CAS  Google Scholar 

  • Wildman DE (2011) Review: toward an integrated evolutionary understanding of the mammalian placenta. Placenta 32(Suppl 2):S142–S145

    Article  PubMed  Google Scholar 

  • Yamada K, Kanda H, Aihara T, Takamatsu N, Shiba T, Ito M (2008) Mammalian Sx15 gene: promoter analysis and implications for placental evolution. Zoolog Sci 25:313–320

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi A, Taniguchi M, Hori O, Ogawa S, Tojo N, Matsuoka N, Miyake S, Kasai K, Sugimoto H, Tamatani M, Yamashita T, Tohyama M (2002) Peg3/Pw1 is involved in p53-mediated cell death pathway in brain ischemia/hypoxia. J Biol Chem 277:623–629

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry E. Keverne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Keverne, B.E. (2013). Importance of Genomic Imprinting in the Evolution and Development of the Maternal Brain. In: Pfaff, D., Christen, Y. (eds) Multiple Origins of Sex Differences in Brain. Research and Perspectives in Endocrine Interactions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33721-5_2

Download citation

Publish with us

Policies and ethics