Skip to main content

Fast Distributed Computation in Dynamic Networks via Random Walks

  • Conference paper
Distributed Computing (DISC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7611))

Included in the following conference series:

Abstract

The paper investigates efficient distributed computation in dynamic networks in which the network topology changes (arbitrarily) from round to round. Random walks are a fundamental primitive in a wide variety of network applications; the local and lightweight nature of random walks is especially useful for providing uniform and efficient solutions to distributed control of dynamic networks. Given their applicability in dynamic networks, we focus on developing fast distributed algorithms for performing random walks in such networks.

Our first contribution is a rigorous framework for design and analysis of distributed random walk algorithms in dynamic networks. We then develop a fast distributed random walk based algorithm that runs in \(\tilde{O}(\sqrt{\tau \Phi})\) rounds (with high probability), where τ is the dynamic mixing time and Φ is the dynamic diameter of the network respectively, and returns a sample close to a suitably defined stationary distribution of the dynamic network.

Our next contribution is a fast distributed algorithm for the fundamental problem of information dissemination (also called as gossip) in a dynamic network. In gossip, or more generally, k-gossip, there are k pieces of information (or tokens) that are initially present in some nodes and the problem is to disseminate the k tokens to all nodes. We present a random-walk based algorithm that runs in \(\tilde{O}(\min\{n^{1/3}k^{2/3}(\tau \Phi)^{1/3}, nk\})\) rounds (with high probability). To the best of our knowledge, this is the first o(nk)-time fully-distributed token forwarding algorithm that improves over the previous-best O(nk) round distributed algorithm [Kuhn et al., STOC 2010], although in an oblivious adversary model.

Supported in part by the following research grants: Nanyang Technological University grant M58110000, Singapore Ministry of Education Academic Research Fund Tier 2 grant MOE2010-T2-2-082, and a grant from the US-Israel Binational Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Avin, C., Koucký, M., Kozma, G., Lotker, Z., Tuttle, M.R.: Many random walks are faster than one. In: SPAA, pp. 119–128 (2008)

    Google Scholar 

  2. Augustine, J., Pandurangan, G., Robinson, P., Upfal, E.: Towards robust and efficient computation in dynamic peer-to-peer networks. In: SODA (2012)

    Google Scholar 

  3. Avin, C., Koucký, M., Lotker, Z.: How to Explore a Fast-Changing World (Cover Time of a Simple Random Walk on Evolving Graphs). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic graphs. In: PODC, pp. 260–269 (2009)

    Google Scholar 

  5. Berenbrink, P., Czyzowicz, J., Elsässer, R., Gąsieniec, L.: Efficient Information Exchange in the Random Phone-Call Model. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 127–138. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Bui, M., Bernard, T., Sohier, D., Bui, A.: Random Walks in Distributed Computing: A Survey. In: Böhme, T., Larios Rosillo, V.M., Unger, H., Unger, H. (eds.) IICS 2004. LNCS, vol. 3473, pp. 1–14. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. CoRR, abs/1012.0009 (2010)

    Google Scholar 

  8. Clementi, A., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time in edge-markovian dynamic graphs. In: PODC, pp. 213–222 (2008)

    Google Scholar 

  9. Clementi, A., Silvestri, R., Trevisan, L.: Information spreading in dynamic graphs. In: PODC (2012)

    Google Scholar 

  10. Das Sarma, A., Molla, A., Pandurangan, G.: Fast Distributed Computation in Dynamic Networks via Random Walks (May 2012), http://arxiv.org/abs/1205.5525

  11. Das Sarma, A., Nanongkai, D., Pandurangan, G.: Fast distributed random walks. In: PODC (2009)

    Google Scholar 

  12. Das Sarma, A., Nanongkai, D., Pandurangan, G., Tetali, P.: Efficient distributed random walks with applications. In: PODC, pp. 201–210 (2010)

    Google Scholar 

  13. Dutta, C., Pandurangan, G., Rajaraman, R., Sun, Z.: Information spreading in dynamic networks. CoRR, abs/1112.0384 (2011)

    Google Scholar 

  14. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: STOC (2010)

    Google Scholar 

  15. Kuhn, F., Oshman, R., Moses, Y.: Coordinated consensus in dynamic networks. In: PODC, pp. 1–10 (2011)

    Google Scholar 

  16. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo (1996)

    MATH  Google Scholar 

  17. Lyons, R.: Asymptotic enumeration of spanning trees. Combinatorics, Probability & Computing 14(4), 491–522 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nanongkai, D., Das Sarma, A., Pandurangan, G.: A tight unconditional lower bound on distributed randomwalk computation. In: PODC, pp. 257–266 (2011)

    Google Scholar 

  19. Pandurangan, G., Khan, M.: Theory of communication networks. In: Algorithms and Theory of Computation Handbook, 2nd edn. CRC Press (2009)

    Google Scholar 

  20. Pandurangan, G., Raghavan, P., Upfal, E.: Building low-diameter peer-to-peer networks. In: FOCS (2001)

    Google Scholar 

  21. Peleg, D.: Distributed computing: a locality-sensitive approach. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  22. Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press, UK (1994)

    Book  MATH  Google Scholar 

  23. Zhong, M., Shen, K.: Random walk based node sampling in self-organizing networks. Operating Systems Review 40(3), 49–55 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Das Sarma, A., Molla, A.R., Pandurangan, G. (2012). Fast Distributed Computation in Dynamic Networks via Random Walks. In: Aguilera, M.K. (eds) Distributed Computing. DISC 2012. Lecture Notes in Computer Science, vol 7611. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33651-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33651-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33650-8

  • Online ISBN: 978-3-642-33651-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics