Skip to main content

Limit Theorems for Functionals of Higher Order Differences of Brownian Semi-Stationary Processes

  • Conference paper
  • First Online:
Prokhorov and Contemporary Probability Theory

Abstract

We present some new asymptotic results for functionals of higher order differences of Brownian semi-stationary processes. In an earlier work [8] we have derived a similar asymptotic theory for first order differences. However, the central limit theorems were valid only for certain values of the smoothness parameter of a Brownian semi-stationary process, and the parameter values which appear in typical applications, e.g. in modeling turbulent flows in physics, were excluded. The main goal of the current paper is the derivation of the asymptotic theory for the whole range of the smoothness parameter by means of using second order differences. We present the law of large numbers for the multipower variation of the second order differences of Brownian semi-stationary processes and show the associated central limit theorem. Finally, we demonstrate some estimation methods for the smoothness parameter of a Brownian semi-stationary process as an application of our probabilistic results.

Mathematics Subject Classification (2010): Primary 60F05, 60G15, 62M09; Secondary 60G22, 60H07

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aldous, D.J., Eagleson, G.K.: On mixing and stability of limit theorems. Ann. Probab. 6(2), 325–331 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barndorff-Nielsen, O.E., Schmiegel, J.: Brownian semistationary processes and volatility/intermittency. In: Albrecher, H., Rungaldier, W., Schachermeyer, W. (eds.) Advanced Financial Modelling. Radon Series of Computational and Applied Mathematics, vol. 8, pp. 1–26. W. de Gruyter, Berlin (2009)

    Google Scholar 

  3. Barndorff-Nielsen, O.E., Shephard, N.: Power and bipower variation with stochastic volatility and jumps (with discussion). J. Financ. Econom. 2, 1–48 (2004)

    Article  Google Scholar 

  4. Barndorff-Nielsen, O.E., Shephard, N.: Econometrics of testing for jumps in financial economics using bipower variation. J. Financ. Econom. 4, 1–30 (2006)

    MathSciNet  Google Scholar 

  5. Barndorff-Nielsen, O.E., Graversen, S.E., Jacod, J., Podolskij, M., Shephard, N.: A central limit theorem for realised power and bipower variations of continuous semimartingales. In: Kabanov, Yu., Liptser, R., Stoyanov, J. (eds.) From Stochastic Calculus to Mathematical Finance: Festschrift in Honour of A.N. Shiryaev, pp. 33–68. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Barndorff-Nielsen, O.E., Shephard, N., Winkel, M.: Limit theorems for multipower variation in the presence of jumps. Stoch. Process. Appl. 116, 796–806 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barndorff-Nielsen, O.E., Corcuera, J.M., Podolskij, M.: Power variation for Gaussian processes with stationary increments. Stoch. Process. Appl. 119, 1845–1865 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barndorff-Nielsen, O.E., Corcuera, J.M., Podolskij, M.: Multipower variation for Brownian semistationary processes. Bernoulli, 17, 1159–1194 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barndorff-Nielsen, O.E., Corcuera, J.M., Podolskij, M., Woerner, J.H.C.: Bipower variation for Gaussian processes with stationary increments. J. Appl. Probab. 46, 132–150 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Basse, A.: Gaussian moving averages and semimartingales. Electron. J. Probab. 13(39), 1140–1165 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  12. Istas, J., Lang, G.: Quadratic variations and estimation of the local Hölder index of a Gaussian process. Annales de l’Institut Henri Poincaré Probabilités et Statistiques 33(4), 407–436 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jacod, J.: Asymptotic properties of realized power variations and related functionals of semimartingales. Stoch. Process. Appl. 118, 517–559 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003)

    MATH  Google Scholar 

  15. Kinnebrock, S., Podolskij, M.: A note on the central limit theorem for bipower variation of general functions. Stoch. Process. Appl. 118, 1056–1070 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lang, G., Roueff, F.: Semi-parametric estimation of the Hölder exponent of a stationary Gaussian process with minimax rates. Stat. Inference Stoch. Process. 4, 283–306 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lépingle, D.: La variation d’ordre p des semimartingales. Zeitschrift fur. Wahrscheinlichkeitsth und verwandte Gebiete 36, 285–316 (1976)

    Article  Google Scholar 

  18. Nualart, D., Ortiz-Latorre, S.: Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stoch. Process. Appl. 118, 614–628 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nualart, D., Peccati, G.: Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33, 177–193 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Peccati, G., Tudor, C.A.: Gaussian limits for vector-valued multiple stochastic integrals. In: Emery, M., Ledoux, M., Yor, M. (eds.) Seminaire de Probabilites XXXVIII. Lecture Notes in Mathematics, vol. 1857, pp. 247–262. Springer, Berlin (2005)

    Google Scholar 

  21. Renyi, A.: On stable sequences of events. Sankhya A 25, 293–302 (1963)

    MathSciNet  MATH  Google Scholar 

  22. Vetter, M.: Limit theorems for bipower variation of semimartingales. Stoch. Process. Appl. 120, 22–38 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Young, L.C.: An inequality of the Hölder type connected with Stieltjes integration. Acta Math. 67, 251–282 (1936)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Ole Barndorff-Nielsen and Mark Podolskij gratefully acknowledge financial support from CREATES funded by the Danish National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ole E. Barndorff-Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barndorff-Nielsen, O.E., Corcuera, J.M., Podolskij, M. (2013). Limit Theorems for Functionals of Higher Order Differences of Brownian Semi-Stationary Processes. In: Shiryaev, A., Varadhan, S., Presman, E. (eds) Prokhorov and Contemporary Probability Theory. Springer Proceedings in Mathematics & Statistics, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33549-5_4

Download citation

Publish with us

Policies and ethics