Skip to main content

Regulation, Transmission, and Buffering of Proton Potential

  • Chapter
  • First Online:
Principles of Bioenergetics

Abstract

The regulation of processes of proton potential generation and consumption are described. The possibility of intracellular transport of energy in the form of \( \Updelta \bar{\mu }_{{{\text{H}}^{ + } }} \) due to the cable properties of giant mitochondria is thoroughly discussed. Mechanisms of proton motive force buffering due to transmembrane transport of K+ and Na+ ions and due to the functioning of membrane-bound pyrophosphatase are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agureev AP, Altukhov ND, Mokhova EN, Savel’ev IA (1981) Activation of the external pathway of NADH oxidation in mitochondria at decreased pH. Biokhimiia 46:1945–1956 (in Russian)

    Google Scholar 

  • Amchenkova AA, Bakeeva LE, Chentsov YS, Skulachev VP, Zorov DB (1988) Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes. J Cell Biol 107:481–495

    Article  Google Scholar 

  • Appleby ML, Morton RK (1959) Lactic dehydrogenase and cytochrome b 2 of baker’s yeast: purification and crystallization. Biochem J 71:492–499

    Google Scholar 

  • Archakov AI, Karyakin AV, Skulachev VP (1975) Intermembrane electron transport in the absence of added water-soluble carriers. Biochim Biophys Acta 408:93–100

    Article  Google Scholar 

  • Bakeeva LE, Chentsov YS, Skulachev VP (1978) Mitochondrial framework (Reticulum mitochondriale) in rat diaphragm muscle. Biochim Biophys Acta 501:349–369

    Article  Google Scholar 

  • Bakeeva LE, Chentsov YS, Skulachev VP (1981) Ontogenesis of mitochondrial reticulum in rat diaphragm muscle. Eur J Cell Biol 25:175–181

    Google Scholar 

  • Bakeeva LE, Chentsov YS, Skulachev VP (1983) Intermitochondrial contacts in myocardiocytes. J Mol Cell Cardiol 15:413–420

    Article  Google Scholar 

  • Bakeeva LE, Skulachev VP, Chentsov YS (1977) [Mitochondrial reticulum: organization and possible functions of a novel intracellular structure in the muscle tissue.] Vestn Mosk Univ Ser. Biol 3:23–28 (in Russian)

    Google Scholar 

  • Bakker EP, Harold FM (1980) Energy coupling to potassium transport in Streptococcus faecalis. Interplay of ATP and the protonmotive force. J Biol Chem 255:433–440

    Google Scholar 

  • Bibikov SI, Grishanin RN, Kaulen AD, Marwan W, Oesterhelt D, Skulachev VP (1993) Bacteriorhodopsin is involved in halobacterial photoreception. Proc Natl Acad Sci U S A 90:9446–9450

    Article  ADS  Google Scholar 

  • Brodie AF (1959) Oxidative phosphorylation in fractionated bacterial systems. I. Role of soluble factors. J Biol Chem 234:398–404

    Google Scholar 

  • Brown II, Galperin MYu, Glagolev AN, Skulachev VP (1983) Utilization of energy stored in the form of Na+ and K+ ion gradients by bacterial cells. Eur J Biochem 134:345–349

    Article  Google Scholar 

  • Brummer B, Parish RW (1983) Mechanisms of auxin-induced plant cell elongation. FEBS Lett 161:9–13

    Article  Google Scholar 

  • Bubenzer HJ (1966) The thin and the thick muscular fibers of the rat diaphragm. Z Zellforsch Mikrosk Anat 69:520–550 (in German)

    Article  Google Scholar 

  • Burton MD, Moore J (1974) The mitochondrion of the flagellate, Polytomella agilis. J Ultrastruct Res 48:414–419

    Article  Google Scholar 

  • Cederbaum AI, Lieber CS, Beattie DS, Rubin E (1973) Characterization of shuttle mechanisms for the transport of reducing equivalents into mitochondria. Arch Biochem Biophys 158:763–781

    Article  Google Scholar 

  • Chailakhyan LM, Glagolev AN, Glagoleva TN, Murvanidze GV, Potapova TV, Skulachev VP (1982) Intercellular power transmission along trichomes of cyanobacteria. Biochim Biophys Acta 679:60–67

    Article  Google Scholar 

  • Drachev VA, Zorov DB (1986) Mitochondria as an electric cable. Experimental testing of a hypothesis. Dokl Akad Nauk SSSR 287:1237–1238 (in Russian)

    Google Scholar 

  • Engelhardt WA (1930) Ortho- und Pyrophosphat im aeroben und anaeroben Stoffwechesel der Blutzellen. Biochem Z 251:16–21

    Google Scholar 

  • Foissner I (1983) Inhibitor studies on formation of giant mitochondria in Nitella flexilis. Phyton (Austria) 28:19–29

    Google Scholar 

  • Gabig TG, Babior BM (1981) The killing of pathogens by phagocytes. Annu Rev Med 32:313–326

    Article  Google Scholar 

  • Gauthier GF (1969) On the relationship of ultrastructural and cytochemical features of color in mammalian skeletal muscle. Z Zellforsch Mikrosk Anat 95:462–482

    Article  Google Scholar 

  • Glagolev AN (1980) Reception of the energy level in bacterial taxis. J Theor Biol 82:171–185

    Article  Google Scholar 

  • Greenhut SF, Roseman MA (1985) Distribution of cytochrome b 5 between sonicated phospholipid vesicles of different size. J Biol Chem 260:5883–5886

    Google Scholar 

  • Johnson LV, Walsh ML, Bockus BJ, Chen LB (1981) Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J Cell Biol 88:526–535

    Article  Google Scholar 

  • Kauppinen R (1983) Proton electrochemical potential of the inner mitochondrial membrane in isolated perfused rat hearts, as measured by exogenous probes. Biochim Biophys Acta 725:131–137

    Article  Google Scholar 

  • Keith AD, Snipes W (1974) Viscosity of cellular protoplasm. Science 183:666–668

    Article  ADS  Google Scholar 

  • Klug GA, Krause J, Ostlund AK, Knoll G, Brdiczka D (1984) Alterations in liver mitochondrial function as a result of fasting and exhaustive exercise. Biochim Biophys Acta 764:272–282

    Article  Google Scholar 

  • Krulwich TA (1983) Na+/H+ antiporters. Biochim Biophys Acta 726:245–264

    Article  Google Scholar 

  • Meisel MN, Birjusova VI, Volkova TM, Malatjan MN, Medvedeva GA (1964) Functional morphology and cytochemistry of the mitochondrial apparatus of microorganisms. In: Kheysin EN (ed) Electron and fluorescent microcopy of the cell. Nauka, Moscow Leningrad, pp 1–15 (in Russian)

    Google Scholar 

  • Miller JB, Koshland DE Jr (1977) Sensory electrophysiology of bacteria: relationship of the membrane potential to motility and chemotaxis in Bacillus subtilis. Proc Natl Acad Sci USA 74:4752–4756

    Article  ADS  Google Scholar 

  • Mitchell P (1968) Chemiosmotic coupling and energy transduction, Glynn Research (Bodmin)

    Google Scholar 

  • Mitchell P (1977) A commentary on alternative hypotheses of protonic coupling in the membrane systems catalysing oxidative and photosynthetic phosphorylation. FEBS Lett 78:1–20

    Article  Google Scholar 

  • Nagi M, Cook L, Prasad MR, Cinti DL (1983) Site of participation of cytochrome b 5 in hepatic microsomal fatty acid chain elongation. Electron input in the first reduction step. J Biol Chem 258:14823–14828

    Google Scholar 

  • Nicholls DG (1982) Bioenergetics, an introduction to the chemiosmotic theory. Academic Press, London

    Google Scholar 

  • Okunuki K (1932) Gas exchange of pollen. Bot Mag (Tokyo) 46:701–721 (in Japanese)

    Google Scholar 

  • Rödel G, Müller G, Bandlow W (1985) Cyclic AMP receptor protein from yeast mitochondria: submitochondrial localization and preliminary characterization. J Bacteriol 161:7–12

    Google Scholar 

  • Skulachev VP (1958) [Novel aspect in studies of the mitochondrial oxidative phosphorylation.] Uspekhi Sovrem. Biol 46:241–263 (in Russian)

    Google Scholar 

  • Skulachev VP (1962) Interrelations of the respiratory chain oxidation and phosphorylation (in Russian), The USSR Academy of Sciences Publishers, Moscow p. 156

    Google Scholar 

  • Skulachev VP (1963) Regulation of coupling of oxidation and phosphorylation. Proc Int Biochem Congr 5:365–374

    Google Scholar 

  • Skulachev VP (1969) Energy accumulation in the cell. Nauka, Moscow. (in Russian)

    Google Scholar 

  • Skulachev VP (1971) Energy transformation in the respiratory chain. Curr Topics Bioenerg 4:127–190

    Google Scholar 

  • Skulachev VP (1977) Transmembrane electrochemical H+-potential as a convertible energy source for the living cell. FEBS Lett 74:1–9

    Article  Google Scholar 

  • Skulachev VP (1978) Membrane-linked energy buffering as the biological function of Na+/K+ gradient. FEBS Lett 87:171–179

    Article  Google Scholar 

  • Skulachev VP (1979) Na+/K+ gradient as an energy reservoir in bacteria. In: Mukohata Y, Packer L (eds) Cation flux across biomembranes, Academic Press, New York

    Google Scholar 

  • Skulachev VP (1980a) Membrane electricity as a convertible energy currency for the cell. Can J Biochem 58:161–175

    Article  Google Scholar 

  • Skulachev VP (1980b) Integrating functions of biomembranes. Problems of lateral transport of energy, metabolites and electrons. Biochim Biophys Acta 604:297–310

    Google Scholar 

  • Skulachev VP (1988) Membrane Bioenergetics. Springer, Berlin

    Book  Google Scholar 

  • Skulachev VP, Maslov SP (1960) The role of the non-phosphorylating oxidation in thermoregulation. Biokhimiia 25:1058–1064 (in Russian)

    Google Scholar 

  • Smith RA, Ord MJ (1983) Mitochondrial form and function relationships in vivo: their potential in toxicology and pathology. Int Rev Cytol 83:63–134

    Article  Google Scholar 

  • Sprott GD, Jarrell KF (1981) K+, Na+, and Mg2+ content and permeability of Methanospirillum hungatei and Methanobacterium thermoautotrophicum. Can J Microbiol 27:444–451

    Article  Google Scholar 

  • Staehelin LA, Arntzen CJ (1983) Regulation of chloroplast membrane function: protein phosphorylation changes the spatial organization of membrane components. J Cell Biol 97:1327–1337

    Article  Google Scholar 

  • Subczynski WK, Hyde JS (1984) Diffusion of oxygen in water and hydrocarbons using an electron spin resonance spin-label technique. Biophys J 45:743–748

    Article  Google Scholar 

  • Sumper M, Träuble H (1973) Membranes as acceptors for palmitoyl CoA in fatty acid biosynthesis. FEBS Lett 30:29–34

    Article  Google Scholar 

  • Takemori S, Kominami S (1984) The role of cytochromes P-450 in adrenal steroidogenesis. Trends Biochem Sci 9:393–396

    Article  Google Scholar 

  • Tanaka K, Kanbe T, Kuroiwa T (1985) Three-dimensional behaviour of mitochondria during cell division and germ tube formation in the dimorphic yeast Candida albicans. J Cell Sci 73:207–220

    Google Scholar 

  • West IC, Mitchell P (1974) Proton/sodium ion antiport in Escherichia coli. Biochem J 144:87–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir P. Skulachev .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Skulachev, V.P., Bogachev, A.V., Kasparinsky, F.O. (2013). Regulation, Transmission, and Buffering of Proton Potential. In: Principles of Bioenergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33430-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33430-6_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33429-0

  • Online ISBN: 978-3-642-33430-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics