Skip to main content

Molecular Dynamics Simulations of Laser Ablation in Metals: Parameter Dependence, Extended Models and Double Pulses

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘12

Abstract

Laser ablation has become a very useful tool in machining today. For example for drilling holes, welding, engraving or coating by deposition of laser-irradiated material. The opposite process, laser removal of material is in general called laser ablation and some aspects of this process shall be discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at http://www.itap.physik.uni-stuttgart.de/~imd

  2. 2.

    The strength of a laser beam is typically given by power per area, called laser fluence.

References

  1. Anisimov S.I., Kapeliovich B.L., Electron-emission from surface of metals induced by ultrashort laser pulses, Perel’man T.L., Zh. Eksp. Teor. Fiz. 66, 776 (1974) [Sov. Phys. JETP 39, 375–380 (1974)].

    Google Scholar 

  2. Bäuerle D., Laser Processing and Chemistry, Fourth Edition, Springer Heidelberg 2011.

    Book  Google Scholar 

  3. Ginzburg V.L., Shabanskiy V.R., Kineticheskaya temperatura elektronov v metallakh i anomalnaya elektronnaya emissiya, Dokl. Akad. Nauk SSSR 100, 445–448 (1955).

    MATH  Google Scholar 

  4. Hüttner B., Rohr G., On the theory of ps and sub-ps laser pulse interaction with metals I. Surface temperature, Appl. Surf. Sci. 103, 269–274 (1996).

    Google Scholar 

  5. Hüttner B., Thermodynamics and transport properties in the transient regime, J. Phys.: Cond. Matt. 11, 6757–6777 (1999).

    Google Scholar 

  6. Ivanov, D.S., Zhigilei, V., Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films, Phys. Rev. B 68, 064114 (2003).

    Article  Google Scholar 

  7. Kaganov M.I., Lifshits I.M., Tanatarov L.V., Relaxation between electrons and the crystalline lattice, Zh. Eksp. Teor. Fiz. 31, 232 (1956) [Sov. Phys.-JETP 4, 173 (1957)].

    Google Scholar 

  8. KraußA., Multipulsanregung in Metallen, Bachelor Thesis, Stuttgart (2011).

    Google Scholar 

  9. Roth, J., Trichet, C., Trebin, H.-R., Sonntag, S., Laser ablation of metals, in High Performance Computing in Science and Engineering ’10, eds. W.E.Nagel, D.B. Kröner, M.M. Resch, Springer Heidelberg, 2011, pp. 159–168.

    Google Scholar 

  10. Lin Z., Zhigilei L.V., Celli V., Phys. Rev. B 77, 075133 (2008).

    Article  Google Scholar 

  11. Roth J., Gähler G., Trebin H.-R., A molecular dynamics run with 5.180.116.000 particles, Int. J. Mod. Phys. C 11, 317–322 (2000).

    Google Scholar 

  12. Rosanti Y., Urbassek H.M., Ultrashort-pulse laser irradiation of metal films: the effect of a double-peak laser pulse, App. Phys. A 101, 509–515 (2010).

    Article  Google Scholar 

  13. Sartison M., Characterization of Ablation Properties, Bachelor Thesis, Stuttgart (2011).

    Google Scholar 

  14. Schäfer C., Urbassek H.M., Zhigilei L.V., Metal ablation by picosecond laser pulses: A hybrid simulation, Phys. Rev. B 66, 115404 (2002).

    Article  Google Scholar 

  15. Sonntag, S., Computer Simulations of Laser Ablation from Simple Metals to Complex Metallic Alloys, PhD Thesis, Stuttgart (2011).

    Google Scholar 

  16. Sonntag, S., Trichet, C., Roth, J., Trebin, H.-R., Molecular Dynamics Simulations of Cluster Distribution drom Femtosecond Laser Ablation in Aluminum, Appl Phys A 104, 559–565 (2011).

    Article  Google Scholar 

  17. Stadler, J., Mikulla, R., Trebin, H.-R., IMD: A software package for molecular dynamics studies on parallel computers. Int. J. Mod. Phys. C 8, 1131–1140 (1997).

    Article  Google Scholar 

  18. Sonntag S., Roth J., Gähler F., Trebin H.-R., Femtosecond laser ablation of aluminum, Appl. Sur. Sci. 255, 9742–9744 (2009).

    Article  Google Scholar 

  19. Siegel J., Deep ablation in dielectrices with temporally shaped femtosecond pulses, Talk at the 11th Conference on Laser Ablation, Cancun, Mexico, (2011).

    Google Scholar 

  20. Sheng H.,https:/sites.google.com/a/gmu.edu/eam-potential-database/Pb, http://cds.gmu.edu/node/39.

  21. Ulrich C., Simulation der Laserablation an Metallen, Diplomarbeit, Stuttgart (2007). http://elib.uni-stuttgart.de/opus/volltexte/2007/3296/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Roth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roth, J., Karlin, J., Sartison, M., Krauß, A., Hans-Rainer-Trebin (2013). Molecular Dynamics Simulations of Laser Ablation in Metals: Parameter Dependence, Extended Models and Double Pulses. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33374-3_10

Download citation

Publish with us

Policies and ethics