Skip to main content

Introduction to Random Fields

  • Chapter
  • First Online:
Stochastic Geometry, Spatial Statistics and Random Fields

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2068))

Abstract

This chapter gives preliminaries on random fields necessary for understanding of the next two chapters on limit theorems. Basic classes of random fields (Gaussian, stable, infinitely divisible, Markov and Gibbs fields, etc.) are considered. Correlation theory of stationary random functions as well as elementary nonparametric statistics and an overview of simulation techniques are discussed in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The notation T comes from “time”, since for random processes t ∈ T is often interpreted as the time parameter.

  2. 2.

    The important contributions of other researchers to establishing this result are discussed in [520, pp. 69–70].

  3. 3.

    Clearly Z is finite if S is a finite set.

  4. 4.

    Note that the canonical potential depends on o ∈ S.

  5. 5.

    Because in ordinary language a clique is a group of people who know and favour each other.

  6. 6.

    All densities are considered with respect to the corresponding Lebesgue measures.

  7. 7.

    For the sake of simplicity, we do not consider the case when T is a subset of a linear vector space.

References

  1. Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer, New York (2007)

    MATH  Google Scholar 

  2. Anderson, D.N.: A multivariate Linnik distribution. Stat. Probab. Lett. 14, 333–336 (1992)

    Article  MATH  Google Scholar 

  3. Apanasovich, T.V., Genton, M.G.: Cross-covariance functions for multivariate random fields based on latent dimensions. Biometrika 97, 15–30 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  5. Askey, R.: Refinements of Abel summability for Jacobi series. In: More, C.C. (ed.) Harmonic Analysis on Homogeneous Spaces. Proceedings of Symposium in Pure Mathematics, vol. XXVI. AMS, Providence (1973)

    Google Scholar 

  6. Bardossy, A.: Introduction to Geostatistics. Tech. rep., University of Stuttgart, Stuttgart (1997)

    Google Scholar 

  7. Barndorff-Nielsen, O.E., Mikosch, T., Resnick, S.I. (eds.): Lévy processes. Theory and Applications. Birkhäuser, Boston (2001)

    MATH  Google Scholar 

  8. Barndorff-Nielsen, O.E., Schmiegel, J.: Spatio-temporal modeling based on Lévy processes, and its applications to turbulence. Russ. Math. Surv. 59, 65–90 (2004)

    Article  MathSciNet  Google Scholar 

  9. Biermé, H., Meerschaert, M.M., Scheffler, H.P.: Operator scaling stable random fields. Stoch. Process. Appl. 117, 312–332 (2007)

    Article  MATH  Google Scholar 

  10. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis, 4th edn. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  11. Brémaud, P.: Markov Chains: Gibbs fields, Monte Carlo simulation, and queues. Texts in Applied Mathematics, vol. 31. Springer, New York (1999)

    Google Scholar 

  12. Brillinger, D.R.: Time Series. Data Analysis and Theory. Holt, Rinehart and Winston, Inc., New York (1975)

    Google Scholar 

  13. Brix, A., Kendall, W.S.: Simulation of cluster point processes without edge effects. Adv. Appl. Prob. 34, 267–280 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer, New York (1991)

    Book  Google Scholar 

  15. Bulinski, A., Shashkin, A.: Limit Theorems for Associated Random Fields and Related Systems. World Scientific, Singapore (2007)

    Google Scholar 

  16. Bulinski, A.V., Kryzhanovskaya, N.: Convergence rate in CLT for vector-valued random fields with self-normalization. Probab. Math. Stat. 26, 261–281 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Bulinski, A.V., Shiryaev, A.N.: Theory of Stochastic Processes. FIZMATLIT, Moscow (2005) (in Russian)

    Google Scholar 

  18. Chambers, J.M., Mallows, C., Stuck, B.W.: A method for simulating stable random variables. J. Am. Stat. Assoc. 71, 340–344 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chan, G., Wood, A.T.A.: An algorithm for simulating stationary Gaussian random fields. J. R. Stat. Soc. Ser. C 46, 171–181 (1997)

    Article  MATH  Google Scholar 

  20. Chen, T., Huang, T.S.: Region based hidden Markov random field model for brain MR image segmentation. World Academy of Sciences. Eng. Technol. 4, 233–236 (2005)

    Google Scholar 

  21. Chilès, J.P., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  22. Cohen, S., Lacaux, C., Ledoux, M.: A general framework for simulation of fractional fields. Stoch. Proc. Appl. 118, 1489–1517 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cont, R., Tankov, P.: Financial Modeling with Jump Processes. Chapman & Hall, Boca Raton (2004)

    Google Scholar 

  24. Cressie, N.A.C.: Statistics for Spatial Data, 2nd edn. Wiley, New York (1993)

    Google Scholar 

  25. Davydov, Y., Molchanov, I., Zuyev, S.: Stable distributions and harmonic analysis on convex cones. C. R. Math. Acad. Sci. Paris 344, 321–326 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Davydov, Y., Molchanov, I., Zuyev, S.: Stability for random measures, point processes and discrete semigroups. Bernoulli 17, 1015–1043 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dietrich, C.R., Newsam, G.N.: A fast and exact method for multidimensional Gaussian stochastic simulations. Water Resource Res. 29, 2861–2869 (1993)

    Article  Google Scholar 

  28. Dietrich, C.R., Newsam, G.N.: Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. J. Sci. Comput. 18, 1088–1107 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Dimitrakopoulos, R., Mustapha, H., Gloaguen, E.: High-order statistics of spatial random fields: Exploring spatial cumulants for modeling complex non-gaussian and non-linear phenomena. Math. Geosci. 42, 65–99 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gaetan, C., Guyon, X.: Spatial Statistics and Modeling. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  31. Gelfand, A.E., Diggle, P.J., Fuentes, M., Guttorp, P.: Handbook of Spatial Statistics. CRC, Boca Raton (2010)

    Book  MATH  Google Scholar 

  32. Genton, M.G.: Highly robust variogram estimation. Math. Geol. 30, 213–221 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Genton, M.G.: Robustness problems in the analysis of spatial data. In: Moore, M. (ed.) Spatial Statistics: Methodological Aspects and Applications. Springer, New York (2001)

    Google Scholar 

  34. Georgii, H.O.: Gibbs Measures and Phase Transitions. Walter de Gruyter, Berlin (1988)

    Book  MATH  Google Scholar 

  35. Gneiting, T.: Radial positive definite functions generated by Euclid’s hat. J. Multivariate Anal. 69, 88–119 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gneiting, T.: Nonseparable, stationary covariance functions for space-time data. J. Am. Stat. Assoc. 97, 590–600 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gneiting, T., Genton, M.G., Guttorp, P.: Geostatistical space-time models, stationarity, separability and full symmetry. In: Finkenstaedt, B., Held, L., Isham, V. (eds.) Statistics of Spatio-Temporal Systems. Monographs in Statistics and Applied Probability, pp. 151–175. Chapman & Hall, Boca Raton (2007)

    Google Scholar 

  38. Gneiting, T., Sasvári, Z.: The characterization problem for isotropic covariance functions. Math. Geol. 31, 105–111 (1999)

    MathSciNet  MATH  Google Scholar 

  39. Gneiting, T., Ševčíková, H., Percival, D.B., Schlather, M., Jiang, Y.: Fast and exact simulation of large Gaussian lattice systems in R 2: Exploring the limits. J. Comput. Graph. Stat. 15, 483–501 (2006)

    Article  Google Scholar 

  40. Grimmett, G.: A theorem about random fields. Bull. Lond. Math. Soc. 5, 81–84 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  41. Grimmett, G.: Probability Theory and Phase Transition. Kluwer, Dordrecht (1994)

    MATH  Google Scholar 

  42. Guo, H., Lim, C.Y., Meerschaert, M.M.: Local Whittle estimator for anisotropic random fields. J. Multivariate Anal. 100, 993–1028 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Guyon, X.: Random Fields on a Network: Modeling, Statistics, and Applications. Springer, New York (1995)

    MATH  Google Scholar 

  44. de Haan, L., Ferreira, A.: Extreme Value Theory: An Introduction. Springer, New York (2006)

    MATH  Google Scholar 

  45. de Haan, L., Zhou, C.: On extreme value analysis of a spatial process. REVSTAT 6, 71–81 (2008)

    MathSciNet  MATH  Google Scholar 

  46. Heesch, D., Petrou, M.: Non-Gibbsian Markov random fields models for contextual labelling of structured scenes. In: Proceedings of British Machine Vision Conference, pp. 930–939 (2007)

    Google Scholar 

  47. Hellmund, G., Prokešová, M., Jensen, E.V.: Lévy-based Cox point processes. Adv. Appl. Prob. 40, 603–629 (2008)

    Article  MATH  Google Scholar 

  48. Herglotz, G.: Über Potenzreihen mit positivem, reellen Teil im Einheitskreis. Ber. Verh. Sächs. Akad. Wiss. 63, 501–511 (1911)

    Google Scholar 

  49. Heyde, C.C., Gay, R.: Smoothed periodogram asymptotics and estimation for processes and fields with possible long–range dependence. Stoch. Process. Appl. 45, 169–182 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ivanov, A.V., Leonenko, N.N.: Statistical Analysis of Random Fields. Kluwer, Dordrecht (1989)

    Book  MATH  Google Scholar 

  51. Janzer, H.S., Raudies, F., Neumann, H., Steiner, F.: Image processing and feature extraction from a perspective of computer vision and physical cosmology. In: Arendt, W., Schleich, W. (eds.) Mathematical Analysis of Evolution, Information and Complexity. Wiley, New York (2009)

    Google Scholar 

  52. Journel, A.G., Huijbregts, C.J.: Mining Geostatistics. Academic, London (1978)

    Google Scholar 

  53. Judge, G.G., Griffiths, W.E., Hill, R.C., Lee, T.C.: The Theory and Practice of Econometrics. Wiley, New York (1980)

    MATH  Google Scholar 

  54. Kabluchko, Z., Schlather, M., de Haan, L.: Stationary max-stable fields associated to negative definite functions. Ann. Probab. 37, 2042–2065 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Kailath, T.: A theorem of I. Schur and its impact on modern signal processing. In: Gohberg, I. (ed.) Schur Methods in Operator Theory and Signal Processing, Vol. I. Birkhäuser, Basel (1986)

    Google Scholar 

  56. Kallenberg, O.: Foundations of Modern Probability, 2nd edn. Springer, New York (2002)

    MATH  Google Scholar 

  57. Karcher, W., Scheffler, H.P., Spodarev, E.: Efficient simulation of stable random fields and its applications. In: Capasso, V., Aletti, G., Micheletti, A. (eds.) Stereology and Image Analysis. Ecs10: Proceedings of The 10th European Congress of ISS, vol. 4, pp. 63–72. ESCULAPIO Pub. Co., Bologna (2009)

    Google Scholar 

  58. Karcher, W., Scheffler, H.P., Spodarev, E.: Simulation of infinitely divisible random fields. Comm. Stat. Simulat. Comput. 42, 215–246 (2013)

    Article  Google Scholar 

  59. Kent, J.T., Wood, A.T.A.: Estimating fractal dimension of a locally self-similar Gaussian process by using increments. J. R. Stat. Soc. B 59, 679–699 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  60. Khoshnevisian, D.: Multiparameter Processes. An Introduction to Random Fields. Springer, New York (2002)

    Google Scholar 

  61. Kinderman, R., Snell, J.L.: Markov Random Fields and Their Applications. Contemporary Mathematics, vol. 1. AMS, Providence (1980)

    Google Scholar 

  62. Kitanidis, P.K.: Introduction to Geostatistics: Applications to Hydrogeology. Cambridge University Press, New York (1997)

    Book  Google Scholar 

  63. Kolmogorov, A.N.: Wienersche Spiralen und einige andere interessante Kurven in Hilbertschem Raum. (Dokl.) Acad. Sci. USSR 26, 115–118 (1940)

    Google Scholar 

  64. Koralov, L.B., Sinai, Y.G.: Theory of Probability and Random Processes. Springer, New York (2009)

    Google Scholar 

  65. Kotz, S., Kozubowski, T.J., Podgorski, K.: The Laplace Distribution and Generalizations. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  66. Kwapień, S., Woyczyński, W.A.: Random Series and Stochastic Integrals: Single and Multiple. Birkhäuser, Boston (1992)

    Book  MATH  Google Scholar 

  67. Lantuejoul, C.: Geostatistical Simulation – Models and Algorithms. Springer, Berlin (2002)

    MATH  Google Scholar 

  68. Lawson, A.B., Denison, D.G.T.: Spatial Cluster Modelling: An Overview. In: Spatial Cluster Modelling, pp. 1–19. Chapman & Hall, Boca Raton (2002)

    Google Scholar 

  69. Li, S.Z.: Markov Random Fields Modeling in Computer Vision. Springer, New York (2001)

    Book  Google Scholar 

  70. Lim, S.C., Teo, L.P.: Gaussian fields and Gaussian sheets with generalized Cauchy covariance structure. Stoch. Proc. Appl. 119, 1325–1356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  71. Ma, F., Wei, M.S., Mills, W.H.: Correlation structuring and the statistical analysis of steady–state groundwater flow. SIAM J. Sci. Stat. Comput. 8, 848–867 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  72. Mandelbrot, B.B., Van Ness, J.: Fractional Brownian motion, fractional noises and applications. SIAM Rev. 10, 422–437 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  73. Matern, B.: Spatial Variation, 2nd edn. Springer, Berlin (1986)

    MATH  Google Scholar 

  74. Mateu, J., Porcu, E., Gregori, P.: Recent advances to model anisotropic space-time data. Stat. Meth. Appl. 17, 209–223 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  75. Molchanov, I.: Convex geometry of max-stable distributions. Extremes 11, 235–259 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  76. Molchanov, I.: Convex and star-shaped sets associated with multivariate stable distributions. I. Moments and densities. J. Multivariate Anal. 100, 2195–2213 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  77. Moussa, A., Sbihi, A., Postaire, J.G.: A Markov random field model for mode detection in cluster analysis. Pattern Recogn. Lett. 29, 1197–1207 (2008)

    Article  Google Scholar 

  78. Pantle, U., Schmidt, V., Spodarev, E.: Central limit theorems for functionals of stationary germ–grain models. Ann. Appl. Probab. 38, 76–94 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  79. Pantle, U., Schmidt, V., Spodarev, E.: On the estimation of integrated covariance functions of stationary random fields. Scand. J. Stat. 37, 47–66 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  80. Paulauskas, V.: On Beveridge-Nelson decomposition and limit theorems for linear random fields. J. Multivariate Anal. 101, 621–639 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  81. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  82. Rachev, S.T., Mittnik, S.: Stable Paretian Models in Finance. Wiley, New York (2000)

    MATH  Google Scholar 

  83. Rajput, B.S., Rosinski, J.: Spectral representations of infinitely divisible processes. Probab. Theor. Relat. Fields 82, 451–487 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  84. Resnick, S.: Extreme Values, Regular Variation and Point Processes. Springer, New York (2008)

    MATH  Google Scholar 

  85. Rosenblatt, M.: Stationary Sequences and Random Fields. Birkhäuser, Boston (1985)

    Book  MATH  Google Scholar 

  86. Roy, P.: Ergodic theory, Abelian groups and point processes induced by stable random fields. Ann. Probab. 38, 770–793 (2010)

    MATH  Google Scholar 

  87. Rozanov, Y.A.: Markov Random Fields. Springer, New York (1982)

    Book  MATH  Google Scholar 

  88. Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications. Chapman & Hall, Boca Raton (2005)

    Book  MATH  Google Scholar 

  89. Samorodnitsky, G., Taqqu, M.: Stable non-Gaussian Random Processes. Stochastic Models with Infinite Variance. Chapman & Hall, Boca Raton (1994)

    MATH  Google Scholar 

  90. Sasvári, A.: Positive Definite and Definitizable Functions. Akademie-Verlag, Berlin (1994)

    MATH  Google Scholar 

  91. Sato, K.I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  92. Schlather, M.: Introduction to positive definite functions and to unconditional simulation of random fields. Tech. rep., Lancaster University (1999)

    Google Scholar 

  93. Schlather, M.: Models for stationary max-stable random fields. Extremes 5, 33–44 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  94. Schlather, M.: Construction of positive definite functions. Lecture at 15th Workshop on Stoch. Geometry, Stereology and Image Analysis, Blaubeuren (2009)

    Google Scholar 

  95. Schlather, M.: Some covariance models based on normal scale mixtures. Bernoulli 16, 780–797 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  96. Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  97. Schoenberg, I.J.: Metric spaces and complete monotone functions. Ann. Math 39, 811–841 (1938)

    Article  MathSciNet  Google Scholar 

  98. Schoutens, W.: Lévy Processes in Finance: Pricing Financial Derivatives. Wiley, Chichester (2003)

    Book  Google Scholar 

  99. Shinozuka, M., Jan, C.M.: Digital simulation of random processes and its applications. J. Sound Vib. 25, 111–128 (1972)

    Article  Google Scholar 

  100. Shiryaev, A.N.: Probability. Graduate Texts in Mathematics, vol. 95, 2nd edn. Springer, New York (1996)

    Google Scholar 

  101. Shiryaev, A.N.: Essentials of Stochastic Finance. Facts, Models, Theory. World Scientific, River Edge (1999)

    Google Scholar 

  102. Speed, T.P., Kiiveri, H.T.: Gaussian Markov distributions over finite graphs. Ann. Stat. 14, 138–150 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  103. Stoev, S.A.: On the ergodicity and mixing of max-stable processes. Stoch. Process. Appl. 118, 1679–1705 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  104. Stoev, S.A., Taqqu, M.S.: Extremal stochastic integrals: a parallel between max-stable processes and α-stable processes. Extremes 8, 237–266 (2006)

    Article  MathSciNet  Google Scholar 

  105. Stoyan, D., Kendall, W., Mecke, J.: Stochastic Geometry and Its Applications, 2nd edn. Wiley, New York (1995)

    MATH  Google Scholar 

  106. Stoyan, D., Stoyan, H., Jansen, U.: Umweltstatistik. Teubner, Stuttgart (1997)

    Book  MATH  Google Scholar 

  107. Tyurin, I.S.: Sharpening the upper bounds for constants in Lyapunov’s theorem. Russ. Math. Surv. 65, 586–588 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  108. Uchaikin, V.V., Zolotarev, V.M.: Chance and Stability. Stable Distributions and Their Applications. VSP, Utrecht (1999)

    Book  MATH  Google Scholar 

  109. Véhel, J.L.: Fractals in Engineering: From Theory to Industrial Applications. Springer, New York (1997)

    Google Scholar 

  110. Wackernagel, H.: Multivariate Geostatistics. An Introduction with Applications, 3rd edn. Springer, Berlin (2003)

    Google Scholar 

  111. Wang, Y., Stoev, S.A., Roy, P.: Ergodic properties of sum- and max- stable stationary random fields via null and positive group actions. Ann. Probab. (2012, to appear). ArXiv:0911.0610

    Google Scholar 

  112. Willinger, W., Paxson, V., Taqqu, M.S.: Self-similarity and heavy tails: Structural modeling of network traffic. A Practical Guide to Heavy Tails, pp. 27–53. Birkhäuser, Boston (1998)

    Google Scholar 

  113. Winkler, G.: Image Analysis, Random Fields and Markov Chain Monte Carlo Methods, 2nd edn. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  114. Wood, A.T.A., Chan, G.: Simulation of stationary Gaussian processes in [0, 1]d. J. Comput. Graph. Stat. 3, 409–432 (1994)

    MathSciNet  Google Scholar 

  115. Yuan, J., Subba Rao, T.: Higher order spectral estimation for random fields. Multidimens. Syst. Signal Process. 4, 7–22 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  116. Zolotarev, V.M.: Modern Theory of Summation of Random Variables. VSP, Utrecht (1997)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Bulinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bulinski, A., Spodarev, E. (2013). Introduction to Random Fields. In: Spodarev, E. (eds) Stochastic Geometry, Spatial Statistics and Random Fields. Lecture Notes in Mathematics, vol 2068. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33305-7_9

Download citation

Publish with us

Policies and ethics