Skip to main content

Strong Limit Theorems for Increments of Random Fields

  • Chapter
  • First Online:
Stochastic Geometry, Spatial Statistics and Random Fields

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2068))

  • 3811 Accesses

Abstract

After reconsidering the oscillating behaviour of sums of i.i.d. random variables we study the oscillating behavior for sums over i.i.d. random fields under exact moment conditions. This summarizes several papers published jointly with A. Gut (Uppsala).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bingham, N.H., Goldie, C.M.: Riesz means and self-neglecting functions. Math. Z. 199, 443–454 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  3. Chow, Y.S.: Delayed sums and Borel summability of independent, identically distributed random variables. Bull. Inst. Math. Acad. Sinica 1, 207–220 (1973)

    MathSciNet  MATH  Google Scholar 

  4. Chow, Y.S., Lai, T.L.: Some one-sided theorems on the tail distribution of sample sums with applications to the last time and largest excess of boundary crossings. Trans. Am. Math. Soc. 208, 51–72 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Csörgő, M., Révész, P.: Strong Approximations in Probability and Statistics. Academic, New York (1981)

    Google Scholar 

  6. Gut, A.: Probability: A Graduate Course, Corr. 2nd printing. Springer, New York (2007)

    Google Scholar 

  7. Gut, A., Jonsson, F., Stadtmüller, U.: Between the LIL and LSL. Bernoulli 16, 1–22 (2010)

    Article  MATH  Google Scholar 

  8. Gut, A., Stadtmüller, U.: Laws of the single logarithm for delayed sums of random fields. Bernoulli 14, 249–276 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gut, A., Stadtmüller, U.: Laws of the single logarithm for delayed sums of random fields. II. J. Math. Anal. Appl. 346, 403–414 (2008)

    Article  MATH  Google Scholar 

  10. Gut, A., Stadtmüller, U.: An asymmetric Marcinkiewcz-Zygmund LLN for random fields. Stat. Probab. Lett. 79, 1016–1020 (2009)

    Article  MATH  Google Scholar 

  11. Gut, A., Stadtmüller, U.: On the LSL for random fields. J. Theoret. Probab. 24, 422–449 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Klesov, O.I.: The Hájek-Rényi inequality for random fields and the strong law of large numbers. Theor. Probab. Math. Stat. 22, 63–71 (1981)

    MathSciNet  MATH  Google Scholar 

  13. Klesov, O.I.: Strong law of large numbers for multiple sums of independent, identically distributed random variables. Math. Notes 38, 1006–1014 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lai, T.L.: Limit theorems for delayed sums. Ann. Probab. 2, 432–440 (1974)

    Article  MATH  Google Scholar 

  15. Lanzinger, H., Stadtmüller, U.: Maxima of increments of partial sums for certain subexponential distributions. Stoch. Process. Appl. 86, 307–322 (2000)

    Article  MATH  Google Scholar 

  16. Shorack, G.R., Smythe, R.T.: Inequalities for max∣S k ∣ ∕ b k  where k ∈ N r. Proc. Am. Math. Soc. 54, 331–336 (1976)

    MathSciNet  MATH  Google Scholar 

  17. Smythe, R.T.: Strong laws of large numbers for r-dimensional arrays of random variables. Ann. Probab. 1, 164–170 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. Smythe, R.T.: Sums of independent random variables on partially ordered sets. Ann. Probab. 2, 906–917 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stadtmüller, U., Thalmaier, M.: Strong laws for delayed sums of random fields. Acta Sci. Math. (Szeged) 75, 723–737 (2009)

    Google Scholar 

  20. Steinebach, J.: On the increments of partial sum processes with multidimensional indices. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 63, 59–70 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wichura, M.J.: Some Strassen-type laws of the iterated logarithm for multiparameter stochastic processes with independent increments. Ann. Probab. 1, 272–296 (1973)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This contribution is based on joint work with my colleague Allan Gut (Uppsala) with whom I enjoyed very much to work on this topic, I am very grateful for this partnership.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Stadtmüller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stadtmüller, U. (2013). Strong Limit Theorems for Increments of Random Fields. In: Spodarev, E. (eds) Stochastic Geometry, Spatial Statistics and Random Fields. Lecture Notes in Mathematics, vol 2068. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33305-7_11

Download citation

Publish with us

Policies and ethics