Skip to main content

Central Limit Theorems for Weakly Dependent Random Fields

  • Chapter
  • First Online:
Stochastic Geometry, Spatial Statistics and Random Fields

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2068))

Abstract

This chapter is a primer on the limit theorems for dependent random fields. First, dependence concepts such as mixing, association and their generalizations are introduced. Then, moment inequalities for sums of dependent random variables are stated which yield e.g. the asymptotic behaviour of the variance of these sums which is essential for the proof of limit theorems. Finally, central limit theorems for dependent random fields are given. Applications to excursion sets of random fields and Newman’s conjecture in the absence of finite susceptibility are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Such family { η t , t ∈ T } exists due to Theorem 9.1.

References

  1. Ahlswede, R., Blinovsky, V.: Lectures on Advances in Combinatorics. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  2. Ahlswede, R., Daykin, D.E.: An inequality for the weights of two families of sets, their unions and intersections. Probab. Theor. Relat. Fields 43, 183–185 (1978)

    MathSciNet  MATH  Google Scholar 

  3. Alon, N., Spencer, J.H.: The Probabilistic Method, 2nd edn. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  4. Bakhtin, Y.: Limit theorems for associated random fields. Theor. Probab. Appl. 54, 678–681 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bakhtin, Y., Bulinski, A.: Moment inequalities for sums of dependent multiindexed random variables. Fundam. Prikl. Math. 3, 1101–1108 (1997)

    MATH  Google Scholar 

  6. Banys, P.: CLT for linear random fields with stationary martingale–difference innovation. Lithuanian Math. J. 17, 1–7 (2011)

    MathSciNet  Google Scholar 

  7. Barbato, D.: FKG inequalities for Brownian motion and stochastic differential equations. Electron. Comm. Probab. 10, 7–16 (2005)

    MathSciNet  MATH  Google Scholar 

  8. van den Berg, J., Kahn, J.: A correlation inequality for connection events in percolation. Ann. Probab. 29, 123–126 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York (1999)

    Google Scholar 

  10. Birkel, T.: Moment bounds for associated sequences. Ann. Probab. 16, 1184–1193 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Birkhoff, G.: Lattice Theory, 3rd edn. AMS, Providence (1979)

    MATH  Google Scholar 

  12. Bolthausen, E.: On the central limit theorem for stationary mixing random fields. Ann. Probab. 10, 1047–1050 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bradley, R.C.: Introduction to Strong Mixing Conditions. Vol. 1, 2, 3. Kendrick Press, Heber City (2007)

    Google Scholar 

  14. Bulinski, A.: Inequalities for moments of sums of associated multi-indexed variables. Theor. Probab. Appl. 38, 342–349 (1993)

    Article  Google Scholar 

  15. Bulinski, A.: Central limit theorem for random fields and applications. In: Skiadas, C.H. (ed.) Advances in Data Analysis. Birkhäuser, Basel (2010)

    Google Scholar 

  16. Bulinski, A.: Central limit theorem for positively associated stationary random fields. Vestnik St. Petersburg University: Mathematics 44, 89–96 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bulinski, A., Shashkin, A.: Rates in the central limit theorem for dependent multiindexed random vectors. J. Math. Sci. 122, 3343–3358 (2004)

    Article  MathSciNet  Google Scholar 

  18. Bulinski, A., Shashkin, A.: Strong invariance principle for dependent random fields. In: Dynamics & Stochastics. IMS Lecture Notes Monograph Series, vol. 48, pp. 128–143. Institute of Mathematical Statistics, Beachwood (2006)

    Google Scholar 

  19. Bulinski, A., Shashkin, A.: Limit Theorems for Associated Random Fields and Related Systems. World Scientific, Singapore (2007)

    Google Scholar 

  20. Bulinski, A., Spodarev, E., Timmermann, F.: Central limit theorems for the excursion sets volumes of weakly dependent random fields. Bernoulli 18, 100–118 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bulinski, A., Suquet, C.: Normal approximation for quasi-associated random fields. Stat. Probab. Lett. 54, 215–226 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bulinski, A.V.: Limit Theorems under Weak Dependence Conditions. MSU. Moscow (1990) (in Russian)

    Google Scholar 

  23. Bulinski, A.V., Keane, M.S.: Invariance principle for associated random fields. J. Math. Sci. 81, 2905–2911 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Burton, R., Waymire, E.: Scaling limits for associated random measures. Ann. Probab. 13, 1267–1278 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Burton, R.M., Dabrowski, A.R., Dehling, H.: An invariance principle for weakly associated random vectors. Stoch. Process. Appl. 23, 301–306 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chayes, L., Lei, H.K.: Random cluster models on the triangular lattice. J. Stat. Phys. 122, 647–670 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chow, Y.S., Teicher, H.: Probability Theory: Independence, Interchangeability, Martingales. Springer Texts in Statistics. Springer, New York (2003)

    MATH  Google Scholar 

  28. Christofidis, T.C., Vaggelatou, E.: A connection between supermodular ordering and positive/negative association. J. Multivariate Anal. 88, 138–151 (2004)

    Article  MathSciNet  Google Scholar 

  29. Cox, J.T., Grimmett, G.: Central limit theorems for associated random variables and the percolation model. Ann. Probab. 12, 514–528 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dedecker, J.: A central limit theorem for stationary random fields. Probab. Theor. Relat. Fields 110, 397–437 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dedecker, J.: Exponential inequalities and functional central limit theorems for a random field. ESAIM Probab. Stat. 5, 77–104 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dedecker, J., Louhichi, S.: Convergence to infinitely divisible distributions with finite variance for some weakly dependent sequences. ESAIM: Prob. Stat. 9, 38–73 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Doukhan, P.: Mixing. Lecture Notes in Statistics, vol. 85. Springer, New York (1994)

    Google Scholar 

  34. Doukhan, P., Louhichi, S.: A new weak dependence condition and applications to moment inequalities. Stoch. Process. Appl. 84, 313–342 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Esary, J.D., Proschan, F., Walkup, D.W.: Association of random variables, with applications. Ann. Math. Stat. 38, 1466–1474 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  36. Fortuin, C., Kasteleyn, P., Ginibre, J.: Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22, 89–103 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  37. Harris, T.E.: A lower bound for the critical probability in a certain percolation process. Proc. Camb. Philos. Soc. 56, 13–20 (1960)

    Article  MATH  Google Scholar 

  38. Herrndorf, N.: An example on the central limit theorem for associated sequences. Ann. Probab. 12, 912–917 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  39. Holley, R.: Remarks on the FKG inequalities. Comm. Math. Phys. 36, 227–231 (1974)

    Article  MathSciNet  Google Scholar 

  40. Ibragimov, I.A., Linnik, Y.V.: Independent and stationary sequences of random variables. Wolters-Noordhoff, Groningen (1971)

    MATH  Google Scholar 

  41. Ivanov, A.V., Leonenko, N.N.: Statistical Analysis of Random Fields. Kluwer, Dordrecht (1989)

    Book  MATH  Google Scholar 

  42. Jakubowski, A.: Minimal conditions in p–stable limit theorems. Stoch. Process. Appl. 44, 291–327 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  43. Jakubowski, A.: Minimal conditions in p–stable limit theorems II. Stoch. Process. Appl. 68, 1–20 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  44. Jenish, N., Prucha, I.R.: Central limit theorems and uniform laws of large numbers for arrays of random fields. J. Econometrics 150, 86–98 (2009)

    Article  MathSciNet  Google Scholar 

  45. Joag-Dev, K., Proschan, F.: Negative association of random variables, with applications. Ann. Stat. 11, 286–295 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  46. Karcher, W.: A central limit theorem for the volume of the excursion sets of associated stochastically continuous stationary random fields. Preprint (2012), submitted

    Google Scholar 

  47. Kratz, M., Leon, J.: Central limit theorems for level functionals of stationary Gaussian processes and fields. J. Theor. Probab. 14, 639–672 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kratz, M., Leon, J.: Level curves crossings and applications for Gaussian models. Extremes 13, 315–351 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Kryzhanovskaya, N.Y.: A moment inequality for sums of multi-indexed dependent random variables. Math. Notes 83, 770–782 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Lee, M.L.T., Rachev, S.T., Samorodnitsky, G.: Association of stable random variables. Ann. Probab. 18, 1759–1764 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  51. Lehmann, E.L.: Some concepts of dependence. Ann. Math. Stat. 37, 1137–1153 (1966)

    Article  MATH  Google Scholar 

  52. Lewis, T.: Limit theorems for partial sums of quasi-associated random variables. In: Szysskowicz, B. (ed.) Asymptotic Methods in Probability and Statistics. Elsevier, Amsterdam (1998)

    Google Scholar 

  53. Lifshits, M.A.: Partitioning of multidimensional sets. In: Rings and Modules. Limit Theorems of Probability Theory, No. 1, pp. 175–178. Leningrad University, Leningrad (1985) (in Russian)

    Google Scholar 

  54. Liggett, T.M.: Conditional association and spin systems. ALEA Lat. Am. J. Probab. Math. Stat. 1, 1–19 (2006)

    MathSciNet  MATH  Google Scholar 

  55. Lindquist, B.H.: Association of probability measures on partially ordered spaces. J. Multivariate Anal. 26, 11–132 (1988)

    Google Scholar 

  56. Loève, M.: Probability Theory. Van Nostrand Co. Inc., Princeton (1960)

    MATH  Google Scholar 

  57. Meschenmoser, D., Shashkin, A.: Functional central limit theorem for the measure of level sets generated by a Gaussian random field. Stat. Probab. Lett. 81, 642–646 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Meschenmoser, D., Shashkin, A.: Functional central limit theorem for the measure of level sets generated by a Gaussian random field. Theor. Probab. Appl. 57(1), 168–178 (2012, to appear)

    Google Scholar 

  59. Móricz, F.: A general moment inequality for the maximum of the rectangular partial sums of multiple series. Acta Math. Hungar. 41, 337–346 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  60. Newman, C.M.: Normal fluctuations and the FKG inequalities. Comm. Math. Phys. 74, 119–128 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  61. Newman, C.M.: Asymptotic independence and limit theorems for positively and negatively dependent random variables. In: Tong, Y.L. (ed.) Inequalities in Statistics and Probability. Institute of Mathematical Statistics, Hayward (1984)

    Google Scholar 

  62. Newman, C.M., Wright, A.L.: An invariance principle for certain dependent sequences. Ann. Probab. 9, 671–675 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  63. Newman, C.M., Wright, A.L.: Associated random variables and martingale inequalities. Z. Wahrscheinlichkeitstheorie und verw. Gebiete 59, 361–371 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  64. Paulauskas, V.: On Beveridge–Nelson decomposition and limit theorems for linear random fields. J. Multivariate Anal. 101, 621–639 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  65. Peligrad, M.: Maximum of partial sums and an invariance principle for a class of weak dependent random variables. Proc. Am. Math. Soc. 126, 1181–1189 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  66. Petrov, V.V.: Limit Theorems of Probability Theory. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  67. Pitt, L.D.: Positively correlated normal variables are associated. Ann. Probab. 10, 496–499 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  68. Preston, C.J.: Gibbs States on Countable Sets. Cambridge University Press, London (1974)

    Book  MATH  Google Scholar 

  69. Račkauskas, A., Suquet, C., Zemlys, V.: Hölderian functional central limit theorem for multi–indexed summation process. Stoch. Process. Appl. 117, 1137–1164 (2007)

    Google Scholar 

  70. Ruelle, D.: Statistical Mechanics: Rigorous Results. World Scientific, Singapore (1969)

    MATH  Google Scholar 

  71. Sarkar, T.K.: Some lower bounds of reliability. Tech. Rep. 124, Department of Operation Research and Statistics, Stanford University (1969)

    Google Scholar 

  72. Seneta, E.: Regularly Varying Functions. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  73. Shao, Q.M.: A comparison theorem on moment inequalities between negatively associated and independent random variables. J. Theoret. Probab. 13, 343–356 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  74. Shashkin, A.: A strong invariance principle for positively or negatively associated random fields. Stat. Probab. Lett. 78, 2121–2129 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  75. Shashkin, A.P.: Quasi-associatedness of a Gaussian system of random vectors. Russ. Math. Surv. 57, 1243–1244 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  76. Shashkin, A.P.: A dependence property of a spin system. In: Transactions of XXIV Int. Sem. on Stability Problems for Stoch. Models, pp. 30–35. Yurmala, Latvia (2004)

    Google Scholar 

  77. Shashkin, A.P.: Maximal inequality for a weakly dependent random field. Math. Notes 75, 717–725 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  78. Shashkin, A.P.: On the Newman central limit theorem. Theor. Probab. Appl. 50, 330–337 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  79. Shiryaev, A.N.: Probability. Graduate Texts in Mathematics, vol. 95, 2nd edn. Springer, New York (1996)

    Google Scholar 

  80. Tone, C.: A central limit theorem for multivariate strongly mixing random fields. Probab. Math. Stat. 30, 215–222 (2010)

    MathSciNet  MATH  Google Scholar 

  81. Vronski, M.A.: Rate of convergence in the SLLN for associated sequences and fields. Theor. Probab. Appl. 43, 449–462 (1999)

    Article  Google Scholar 

  82. Zhang, L.X., Wen, J.: A weak convergence for functions of negatively associated random variables. J. Multivariate Anal. 78, 272–298 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Bulinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bulinski, A., Spodarev, E. (2013). Central Limit Theorems for Weakly Dependent Random Fields. In: Spodarev, E. (eds) Stochastic Geometry, Spatial Statistics and Random Fields. Lecture Notes in Mathematics, vol 2068. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33305-7_10

Download citation

Publish with us

Policies and ethics