Skip to main content

Weighted Counting of k-Matchings Is #W[1]-Hard

  • Conference paper
Parameterized and Exact Computation (IPEC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7535))

Included in the following conference series:

Abstract

In the seminal paper for parameterized counting complexity [1], the following problem is conjectured to be #W[1]-hard: Given a bipartite graph G and a number k ∈ ℕ, which is considered as a parameter, count the number of matchings of size k in G.

We prove hardness for a natural weighted generalization of this problem: Let G = (V,E,w) be an edge-weighted graph and define the weight of a matching as the product of weights of all edges in the matching. We show that exact evaluation of the sum over all such weighted matchings of size k is #W[1]-hard for bipartite graphs G.

As an intermediate step in our reduction, we also prove #W[1]- hardness of the problem of counting k-partial cycle covers, which are vertex-disjoint unions of cycles including k edges in total. This hardness result even holds for unweighted graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM Journal on Computing, 538–547 (2002)

    Google Scholar 

  2. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer Science 8(2), 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics - an exact result. Philosophical Magazine 68(6), 1478–6435 (1961)

    MathSciNet  Google Scholar 

  4. Kasteleyn, P.: The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice. Physica 27(12), 1209–1225 (1961)

    Article  MATH  Google Scholar 

  5. Vadhan, S.P.: The complexity of counting in sparse, regular, and planar graphs. SIAM J. Comput. 31(2), 398–427 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jerrum, M., Sinclair, A.: Approximating the permanent. SIAM J. Comput. 18(6), 1149–1178 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Makowsky, J.A.: Algorithmic uses of the Feferman-Vaught theorem. Annals of Pure and Applied Logic 126(1-3), 159–213 (2004); Provinces of logic determined. Essays in the memory of Alfred Tarski. Parts I, II and III

    Article  MathSciNet  MATH  Google Scholar 

  8. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation 85(1), 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Galluccio, A., Loebl, M.: On the theory of Pfaffian orientations. I. Perfect matchings and permanents. Electronic Journal of Combinatorics 6 (1998)

    Google Scholar 

  10. Frick, M.: Generalized Model-Checking over Locally Tree-Decomposable Classes. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 632–644. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Vassilevska, V., Williams, R.: Finding, minimizing, and counting weighted subgraphs. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 455–464. ACM, New York (2009)

    Chapter  Google Scholar 

  12. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Counting Paths and Packings in Halves. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 578–586. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Bläser, M., Curticapean, R.: The Complexity of the Cover Polynomials for Planar Graphs of Bounded Degree. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 96–107. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Bläser, M., Dell, H.: Complexity of the Cover Polynomial. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 801–812. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Chung, F.R.K., Graham, R.L.: On the cover polynomial of a digraph. J. Combin. Theory Ser. B 65, 273–290 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bläser, M., Curticapean, R. (2012). Weighted Counting of k-Matchings Is #W[1]-Hard. In: Thilikos, D.M., Woeginger, G.J. (eds) Parameterized and Exact Computation. IPEC 2012. Lecture Notes in Computer Science, vol 7535. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33293-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33293-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33292-0

  • Online ISBN: 978-3-642-33293-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics