Skip to main content

Impact of Frequency on the Energetic Efficiency of Action Potentials

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2012 (ICANN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7552))

Included in the following conference series:

  • 4112 Accesses

Abstract

Sodium entry during the decaying phase of the action potential determines the metabolic efficiency of a neuron’s spiking mechanism. Recent studies have reported that mammalian action potentials are close to metabolic optimality but that fast-spiking inhibitory neurons are less efficient than their pyramidal counterparts. It is postulated that this represents nature’s tradeoff between metabolic efficiency and the ability to discharge at high rates. Using eight different published Hodgkin-Huxley models of mammalian neurons to cover a wide range of action potential metabolic efficiencies, we show that the cost of operating a neuron is heavily dependent on its output frequency. We observe that this cost is significantly smaller than the frequency-dependent cost naively estimated from an isolated action potential, the gap increasing with increasing frequencies. Our results demonstrate that metabolic efficiency cannot be considered only in terms of isolated action potentials but must be studied over a range of meaningful frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jolivet, R., Magistretti, P., Weber, B.: Deciphering neuron-glia compartmentalization in cortical energy metabolism. Front. Neuroenergetics 1, 4 (2009)

    Google Scholar 

  2. Sengupta, B., Stemmler, M., Laughlin, S.B., Niven, J.E.: Action potential energy efficiency varies among neuron types in vertebrates and invertebrates. PLoS Comput. Biol. 6, e1000840 (2010)

    Google Scholar 

  3. Alle, H., Roth, A., Geiger, J.: Energy-efficient action potentials in hippocampal mossy fibers. Science 325, 1405–1408 (2009)

    Article  Google Scholar 

  4. Attwell, D., Laughlin, S.B.: An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 (2001)

    Article  Google Scholar 

  5. Carter, B.C., Bean, B.P.: Sodium entry during action potentials of mammalian neurons: incomplete inactivation and reduced metabolic efficiency in fast-spiking neurons. Neuron 64, 898–909 (2009)

    Article  Google Scholar 

  6. Hodgkin, A.L., Huxley, A.F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of loligo. J. Physiol. 116, 449–472 (1952)

    Google Scholar 

  7. Hasenstaub, A., Otte, S., Callaway, E., Sejnowski, T.J.: Metabolic cost as a unifying principle governing neuronal biophysics. Proc. Natl. Acad. Sci. USA 107, 12329–12334 (2010)

    Article  Google Scholar 

  8. Erisir, A., Lau, D., Rudy, B., Leonard, C.S.: Function of specific k(+) channels in sustained high-frequency firing of fast-spiking neocortical interneurons. J. Neurophysiol. 82, 2476–2489 (1999)

    Google Scholar 

  9. Golomb, D., Donner, K., Shacham, L., Shlosberg, D., Amitai, Y., Hansel, D.: Mechanisms of firing patterns in fast-spiking cortical interneurons. PLoS Comput. Biol. 3, e156 (2007)

    Google Scholar 

  10. Wang, X.J., Buzsáki, G.: Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J. Neurosci. 16, 6402–6413 (1996)

    Google Scholar 

  11. Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z., Bal, T., Frégnac, Y., Markram, H., Destexhe, A.: Minimal hodgkin-huxley type models for different classes of cortical and thalamic neurons. Biol. Cybern. 99, 427–441 (2008)

    Article  MATH  Google Scholar 

  12. Wang, X.J.: Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J. Neurophysiol. 79, 1549–1566 (1998)

    Google Scholar 

  13. Jolivet, R., Lewis, T.J., Gerstner, W.: Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J. Neurophysiol. 92, 959–976 (2004)

    Article  Google Scholar 

  14. Jolivet, R., Rauch, A., Lüscher, H.R., Gerstner, W.: Predicting spike timing of neocortical pyramidal neurons by simple threshold models. J. Comput. Neurosci. 21, 35–49 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Laughlin, S.B., Sejnowski, T.J.: Communication in neuronal networks. Science 301, 1870–1874 (2003)

    Article  Google Scholar 

  16. Niven, J.E., Anderson, J.C., Laughlin, S.B.: Fly photoreceptors demonstrate energy-information trade-offs in neural coding. PLoS Biol. 5, e116 (2007)

    Google Scholar 

  17. Howarth, C., Peppiatt-Wildman, C.M., Attwell, D.: The energy use associated with neural computation in the cerebellum. J. Cereb. Blood Flow Metab. 30, 403–414 (2010)

    Article  Google Scholar 

  18. Gentet, L.J., Avermann, M., Matyas, F., Staiger, J.F., Petersen, C.C.H.: Membrane potential dynamics of gabaergic neurons in the barrel cortex of behaving mice. Neuron 65, 422–435 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Singh, A., Magistretti, P.J., Weber, B., Jolivet, R. (2012). Impact of Frequency on the Energetic Efficiency of Action Potentials. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds) Artificial Neural Networks and Machine Learning – ICANN 2012. ICANN 2012. Lecture Notes in Computer Science, vol 7552. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33269-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33269-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33268-5

  • Online ISBN: 978-3-642-33269-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics