Skip to main content

Type II Toxin-Antitoxin Loci: The fic Family

  • Chapter
  • First Online:
Prokaryotic Toxin-Antitoxins

Abstract

FIC domain containing proteins (Fic proteins) are present in all domains of life but particularly widespread among prokaryotes. FIC domains with a fully conserved HxFx[D/E]GNGRxxR active site motif catalyze adenylylation (also known as AMPylation), the transfer of an adenosine 5′-monophosphate moiety onto target proteins. Adenylylation activity is tightly controlled by an inhibitory α-helix (α inh) that can either be part of the Fic protein (intramolecular inhibition) or encoded on a different polypeptide chain (intermolecular inhibition), the latter constituting a novel class of type II toxin-antitoxin (TA) modules represented by VbhT-VbhA of Bartonella schoenbuchensis and FicT-FicA of Escherichia coli. The helix α inh harbors a [S/T]xxxE[G/N] motif with the conserved glutamate partially obstructing the ATP-binding site and forcing ATP to bind in a catalytically incompetent conformation. Release of inhibition by removal of the antitoxin component or by mutation of the conserved glutamate in α inh converts Fic proteins into toxins that severely impair bacterial growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arbing, M.A., et al. (2010). Crystal structures of Phd-Doc, HigA, and YeeU establish multiple evolutionary links between microbial growth-regulating toxin-antitoxin systems. Structure 18, 8, 996–1010.

    Google Scholar 

  • Das, D. (2009). Crystal structure of the Fic (Filamentation induced by cAMP) family protein SO4266 (gi|24375750) from Shewanella oneidensis MR-1 at 1.6 A resolution. Proteins, 75(1), 264–271.

    Article  PubMed  CAS  Google Scholar 

  • Desveaux, D., Singer, A. U., Wu, A. J., McNulty, B. C., Musselwhite, L., Nimchuk, Z., et al. (2007). Type III effector activation via nucleotide binding, phosphorylation, and host target interaction. PLoS Pathogens, 3(3), e48.

    Article  PubMed  Google Scholar 

  • Engel, P., Goepfert, A., Stanger, F. V., Harms, A., Schmidt, A., Schirmer, T., et al. (2012). Adenylylation control by intra- or intermolecular active-site obstruction in Fic proteins. Nature, 482(7383), 107–110.

    Article  PubMed  CAS  Google Scholar 

  • Feng, F., Yang, F., Rong, W., Wu, X., Zhang, J., Chen, S., et al. (2012). A Xanthomonas uridine 5′-monophosphate transferase inhibits plant immune kinases. Nature, 485(7396), 114–118.

    Article  PubMed  CAS  Google Scholar 

  • Hu, P., et al. (2009). Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biology, 7(4), e96.

    Article  PubMed  Google Scholar 

  • Kawamukai, M., Matsuda, H., Fujii, W., Nishida, T., Izumoto, Y., Himeno, M., et al. (1988). Cloning of the fic-1 gene involved in cell filamentation induced by cyclic AMP and construction of a Δfic Escherichia coli strain. Journal of Bacteriology, 170(9), 3864–3869.

    PubMed  CAS  Google Scholar 

  • Kawamukai, M., Matsuda, H., Fujii, W., Utsumi, R., & Komano, T. (1989). Nucleotide sequences of fic and fic-1 genes involved in cell filamentation induced by cyclic AMP in Escherichia coli. Journal of Bacteriology, 171(8), 4525–4529.

    PubMed  CAS  Google Scholar 

  • Kinch, L. N., Yarbrough, M. L., Orth, K., & Grishin, N. V. (2009). Fido, a novel AMPylation domain common to fic, doc, and AvrB. PloS one, 4(6), e5818.

    Article  PubMed  Google Scholar 

  • Lehnherr, H., Maguin, E., Jafri, S., & Yarmolinsky, M. B. (1993). Plasmid addiction genes of bacteriophage P1: Doc, which causes cell death on curing of prophage, and phd, which prevents host death when prophage is retained. Journal of Molecular Biology, 233(3), 414–428.

    Article  PubMed  CAS  Google Scholar 

  • Liu, M., Zhang, Y., Inouye, M., & Woychik, N. A. (2008). Bacterial addiction module toxin Doc inhibits translation elongation through its association with the 30S ribosomal subunit. Proceedings of the National academy of Sciences of the United States of America, 105(15), 5885–5890.

    Article  PubMed  CAS  Google Scholar 

  • Luong, P., Kinch, L. N., Brautigam, C. A., Grishin, N. V., Tomchick, D. R., & Orth, K. (2010). Kinetic and structural insights into the mechanism of AMPylation by VopS Fic domain. The Journal of Biological Chemistry, 285(26), 20155–20163.

    Article  PubMed  CAS  Google Scholar 

  • Magnuson, R., & Yarmolinsky, M. B. (1998). Corepression of the P1 addiction operon by Phd and Doc. Journal of Bacteriology, 180(23), 6342–6351.

    PubMed  CAS  Google Scholar 

  • Makarova, K. S., Wolf, Y. I., & Koonin, E. V. (2009). Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biology Direct, 4, 19.

    Article  PubMed  Google Scholar 

  • Mattoo, S., Durrant, E., Chen, M. J., Xiao, J., Lazar, C. S., Manning, G., et al. (2011). Comparative analysis of Histophilus somni immunoglobulin-binding protein A (IbpA) with other fic domain-containing enzymes reveals differences in substrate and nucleotide specificities. The Journal of Biological Chemistry, 286(37), 32834–32842.

    Article  PubMed  CAS  Google Scholar 

  • Miller, W. G., Pearson, B. M., Wells, J. M., Parker, C. T., Kapitonov, V. V., & Mandrell, R. E. (2005). Diversity within the Campylobacter jejuni type I restriction-modification loci. Microbiology, 151(Pt 2), 337–351.

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee, S., Liu, X., Arasaki, K., McDonough, J., Galan, J. E., & Roy, C. R. (2011). Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature, 477(7362), 103–106.

    Article  PubMed  CAS  Google Scholar 

  • Palanivelu, D. V., Goepfert, A., Meury, M., Guye, P., Dehio, C., & Schirmer, T. (2011). Fic domain-catalyzed adenylylation: Insight provided by the structural analysis of the type IV secretion system effector BepA. Protein science : a publication of the Protein Society, 20(3), 492–499.

    Article  CAS  Google Scholar 

  • Punta, M. et al. (2012). The Pfam protein families database. Nucleic acids research 40 (Database issue):D290–301.

    Google Scholar 

  • Utsumi, R., Nakamoto, Y., Kawamukai, M., Himeno, M., & Komano, T. (1982). Involvement of cyclic AMP and its receptor protein in filamentation of an Escherichia coli fic mutant. Journal of Bacteriology, 151(2), 807–812.

    PubMed  CAS  Google Scholar 

  • Watson, J. D., & Milner-White, E. J. (2002). A novel main-chain anion-binding site in proteins: The nest. A particular combination of phi, psi values in successive residues gives rise to anion-binding sites that occur commonly and are found often at functionally important regions. Journal of Molecular Biology, 315(2), 171–182.

    Article  PubMed  CAS  Google Scholar 

  • Worby, C. A., Mattoo, S., Kruger, R. P., Corbeil, L. B., Koller, A., Mendez, J. C., et al. (2009). The fic domain: Regulation of cell signaling by adenylylation. Molecular Cell, 34(1), 93–103.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, J., Worby, C. A., Mattoo, S., Sankaran, B., & Dixon, J. E. (2010). Structural basis of Fic-mediated adenylylation. Nature Structural & Molecular Biology, 17(8), 1004–1010.

    Article  CAS  Google Scholar 

  • Yamaguchi, Y., Park, J. H., & Inouye, M. (2011). Toxin-antitoxin systems in bacteria and archaea. Annual Review of Genetics, 45, 61–79.

    Article  PubMed  CAS  Google Scholar 

  • Yarbrough, M. L., Li, Y., Kinch, L. N., Grishin, N. V., Ball, H. L., & Orth, K. (2009). AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science, 323(5911), 269–272.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Dehio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goepfert, A., Harms, A., Schirmer, T., Dehio, C. (2013). Type II Toxin-Antitoxin Loci: The fic Family. In: Gerdes, K. (eds) Prokaryotic Toxin-Antitoxins. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33253-1_10

Download citation

Publish with us

Policies and ethics