Skip to main content

Regular Diffusions on [0,∞)

  • Chapter
Quasi-Stationary Distributions

Part of the book series: Probability and Its Applications ((PIA))

  • 1986 Accesses

Abstract

The purpose of this chapter is to develop the theory of QSDs in the framework of one dimensional diffusions absorbed at 0. So here the space is \(\mathcal{X}=\mathbb {R}_{+}\) and the trap \({\partial\mathcal{X}}=\{0\}\). Some of the applications of this theory can be found in models of ecology, economy (see Sect. 7.8 in the next chapter) and Markov mortality models (see Steinsaltz and Evans in Theor. Popul. Biol. 65(4):319–337, 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Given a measure ρ, the integral \(\int_{a}^{b} f(x) \,d\rho(x)\) is interpreted as the integral over the closed interval [a,b], unless a or b are ±∞ in which case they are excluded from the integral. When it is necessary to exclude, for example, the point a, we shall use the notation ∫(a,b] f(x) (x).

References

  • Azencott, R. (1974). Behavior of diffusion semigroups at infinity. Bulletin de la Société Mathématique de France, 102, 193–240.

    MathSciNet  MATH  Google Scholar 

  • Brown, L. D. (1968) IMS lecture notes: Vol. 9. Fundamentals of statistical exponential families.

    Google Scholar 

  • Coddington, E. A., & Levinson, N. (1955). Theory of ordinary differential equations. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Collet, P., Martínez, S., & San Martín, J. (1995a). Asymptotic laws for one dimensional diffusions conditioned to nonabsorption. Annals of Probability, 23, 1300–1314.

    Article  MathSciNet  MATH  Google Scholar 

  • Feller, W. (1952). The parabolic differential equation and the associated semi-groups of transformations. Annals of Mathematics, 55, 468–519.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferrari, P. A., Kesten, H., & Martínez, S. (1996). R-positivity, quasi-stationary distributions and ratio limit theorems for a class of probabilistic automata. The Annals of Applied Probability, 6, 577–616.

    Article  MathSciNet  MATH  Google Scholar 

  • Karatzas, I., & Shreve, S. E. (1988). Brownian motion and stochastic calculus. New York: Springer.

    Book  MATH  Google Scholar 

  • Kesten, H. (1976). Existence and uniqueness of countable one-dimensional random fields. Annals of Probability, 4, 557–569.

    Article  MathSciNet  MATH  Google Scholar 

  • Knight, F. B. (1969). Brownian local times and Taboo processes. Transactions of the American Society, 143, 173–185.

    Article  MATH  Google Scholar 

  • Kolb, M., & Steinsaltz, D. (2012). Quasilimiting behavior of one-dimensional diffusions with killing. Annals of Probability, 40(1), 162–212.

    Article  MathSciNet  MATH  Google Scholar 

  • Lladser, M., & San Martín, J. (2000). Domain of attraction of the quasi-stationary distributions for the Ornstein–Uhlenbeck process. Journal of Applied Probability, 37, 511–520.

    Article  MathSciNet  MATH  Google Scholar 

  • Mandl, P. (1961). Spectral theory of semi-groups connected with diffusion processes and its applications. Czechoslovak Mathematical Journal, 11, 558–569.

    MathSciNet  Google Scholar 

  • Martínez, S., & San Martín, J. (1994). Quasi-stationary distributions for a Brownian motion with drift and associated limit laws. Journal of Applied Probability, 31, 911–920.

    Article  MathSciNet  MATH  Google Scholar 

  • Martínez, S., & San Martín, J. (2004). Classification of killed one-dimensional diffusions. Annals of Probability, 32, 530–552.

    Article  MathSciNet  MATH  Google Scholar 

  • Martínez, S., Picco, P., & San Martín, J. (1998). Domain of attraction of quasi-stationary distributions for the Brownian motion with drift. Advances in Applied Probability, 30, 385–408.

    Article  MathSciNet  MATH  Google Scholar 

  • Pinsky, R. (1985). On the convergence of diffusion processes conditioned to remain in bounded region for large time to limiting positive recurrent diffusion processes. Annals of Probability, 13, 363–378.

    Article  MathSciNet  MATH  Google Scholar 

  • Rogers, L., & Pitman, J. (1981). Markov functions. Annals of Probability, 9, 573–582.

    Article  MathSciNet  MATH  Google Scholar 

  • Royer, G. (1999). Une initiation aux inégalités de Sobolev logarithmiques. Paris: S.M.F.

    MATH  Google Scholar 

  • Seneta, E. (1981). Springer series in statistics. Non-negative matrices and Markov chains. New York: Springer.

    MATH  Google Scholar 

  • Steinsaltz, D., & Evans, S. (2004). Markov mortality models: implications of quasistationarity and varying initial distributions. Theoretical Population Biology, 65(4), 319–337.

    Article  MATH  Google Scholar 

  • Steinsaltz, D., & Evans, S. (2007). Quasistationary distributions for one-dimensional diffusions with killing. Transactions of the American Mathematical Society, 359, 1285–1324.

    Article  MathSciNet  MATH  Google Scholar 

  • Vere-Jones, D. (1967). Ergodic properties of nonnegative matrices. I. Pacific Journal of Mathematics, 22, 361–386.

    MathSciNet  MATH  Google Scholar 

  • Williams, D. (1970). Decomposing the Brownian path. Bulletin of the American Mathematical Society, 76, 871–873.

    Article  MathSciNet  MATH  Google Scholar 

  • Yosida, K. (1980). GMW: Vol. 123. Functional analysis. Berlin: Springer.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Collet, P., Martínez, S., San Martín, J. (2013). Regular Diffusions on [0,∞). In: Quasi-Stationary Distributions. Probability and Its Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33131-2_6

Download citation

Publish with us

Policies and ethics