Skip to main content

Accounting for Gene Tree Uncertainties Improves Gene Trees and Reconciliation Inference

  • Conference paper
Algorithms in Bioinformatics (WABI 2012)

Abstract

We propose a reconciliation heuristic accounting for gene duplications, losses and horizontal transfers that specifically takes into account the uncertainties in the gene tree. Rearrangements are tried for gene tree edges that are weakly supported, and are accepted whenever they improve the reconciliation cost. We prove useful properties on the dynamic programming matrix used to compute reconciliations, which allows to speed-up the tree space exploration when rearrangements are generated by Nearest Neighbor Interchanges (NNI) edit operations. Experimental results on simulated and real data confirm that running times are greatly reduced when considering the above-mentioned optimization in comparison to the naïve rearrangement procedure. Results also show that gene trees modified by such NNI rearrangements are closer to the correct (simulated) trees and lead to more correct event predictions on average. The program is available at http://www.atgc-montpellier.fr/ Mowgli/

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hallett, M., Lagergren, J., Tofigh, A.: Simultaneous identification of duplications and lateral transfers. In: RECOMB 2004, pp. 347–356. ACM, New York (2004)

    Chapter  Google Scholar 

  2. Górecki, P.: Reconciliation problems for duplication, loss and horizontal gene transfer. In: Bourne, P.E., Gusfield, D. (eds.) RECOMB, pp. 316–325. ACM (2004)

    Google Scholar 

  3. Conow, C., Fielder, D., Ovadia, Y., Libeskind-Hadas, R.: Jane: a new tool for the cophylogeny reconstruction problem. Algorithms Mol. Biol. 5, 16 (2010)

    Article  Google Scholar 

  4. Doyon, J.-P., Scornavacca, C., Gorbunov, K.Y., Szöllősi, G.J., Ranwez, V., Berry, V.: An Efficient Algorithm for Gene/Species Trees Parsimonious Reconciliation with Losses, Duplications and Transfers. In: Tannier, E. (ed.) RECOMB-CG 2010. LNCS, vol. 6398, pp. 93–108. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Tofigh, A., Hallett, M., Lagergren, J.: Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM TCBB 8(2), 517–535 (2011)

    Google Scholar 

  6. David, L.A., Alm, E.J.: Rapid evolutionary innovation during an archaean genetic expansion. Nature 469(7328), 93–96 (2011)

    Article  Google Scholar 

  7. Bansal, M.S., Alm, E.J., Kellis, M.: Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer, and loss. In: Proceeding ISBM 2012 (2012)

    Google Scholar 

  8. Goodman, M., Czelusniak, J., Moore, G.W., Herrera, R.A., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst. Zool. 28, 132–163 (1979)

    Article  Google Scholar 

  9. Page, R.D.: Extracting species trees from complex gene trees: reconciled trees and vertebrate phylogeny. Mol. Phylogenet. Evol. 14, 89–106 (2000)

    Article  Google Scholar 

  10. Ma, B., Li, M., Zhang, L.: From gene trees to species trees. SIAM Journal on Computing 30(3), 729–752 (2001)

    Article  MathSciNet  Google Scholar 

  11. Nakhleh, L., Warnow, T., Linder, C.R.: Reconstructing reticulate evolution in species: theory and practice. In: Proceedings of the Eighth Annual International Conference on Research in Computational Molecular Biology, RECOMB 2004, pp. 337–346. ACM, New York (2004)

    Chapter  Google Scholar 

  12. Arvestad, L., Lagergren, J., Sennblad, B.: The gene evolution model and computing its associated probabilities. J. ACM 56(2) (2009)

    Google Scholar 

  13. Doyon, J.-P., Ranwez, V., Daubin, V., Berry, V.: Models, algorithms and programs for phylogeny reconciliation. Brief Bioinform. 12(5), 392–400 (2011)

    Article  Google Scholar 

  14. Ovadia, Y., Fielder, D., Conow, C., Libeskind-Hadas, R.: The co phylogeny reconstruction problem is NP-complete. J. Comput. Biol. 18(1), 59–65 (2011)

    Article  MathSciNet  Google Scholar 

  15. Libeskind-Hadas, R., Charleston, M.A.: On the computational complexity of the reticulate cophylogeny reconstruction problem. JCB 16(1), 105–117 (2009)

    MathSciNet  Google Scholar 

  16. Durand, D., Halldorsson, B.V., Vernot, B.: A hybrid micro-macroevolutionary approach to gene tree reconstruction. J. Comput. Biol. 13(2), 320–335 (2006)

    Article  MathSciNet  Google Scholar 

  17. Hahn, M.W.: Bias in phylogenetic tree reconciliation methods: implications for vertebrate genome evolution. Genome Biology 8(R141) (2007)

    Google Scholar 

  18. Berglund-Sonnhammer, A.C., Steffansson, P., Betts, M.J., Liberles, D.A.: Optimal gene trees from sequences and species trees using a soft interpretation of parsimony. J. Mol. Evol. 63(2), 240–250 (2006)

    Article  Google Scholar 

  19. Chang, W.-C., Eulenstein, O.: Reconciling Gene Trees with Apparent Polytomies. In: Chen, D.Z., Lee, D.T. (eds.) COCOON 2006. LNCS, vol. 4112, pp. 235–244. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Vernot, B., Stolzer, M., Goldman, A., Durand, D.: Reconciliation with non-binary species trees. J. Comput. Biol. 15, 981–1006 (2008)

    Article  MathSciNet  Google Scholar 

  21. Chaudhary, R., Burleigh, J.G., Eulenstein, O.: Algorithms for Rapid Error Correction for the Gene Duplication Problem. In: Chen, J., Wang, J., Zelikovsky, A. (eds.) ISBRA 2011. LNCS, vol. 6674, pp. 227–239. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Semple, C., Steel, M.A.: Phylogenetics. Oxford Lecture Series in Mathematics and its Applications, vol. 24. Oxford University Press (2003)

    Google Scholar 

  23. Sanderson, M.J.: Inferring absolute rates of evolution and divergence times in the absence of a molecular clock. Bioinformatics 19, 301–302 (2003)

    Article  Google Scholar 

  24. Tofigh, A.: Using Trees to Capture Reticulate Evolution, Lateral Gene Transfers and Cancer Progression. PhD thesis, KTH Royal Institute of Technology, Sweden (2009)

    Google Scholar 

  25. Felsenstein, J.: Inferring phylogenies. Sinauer Associates, Inc. (2004)

    Google Scholar 

  26. Knuth, D.E.: The Art of Computer Programmingm, Sorting and Searching, vol. 3. Addison-Wesley (1973)

    Google Scholar 

  27. Devroye, L.: A note on the height of binary search trees. Journal of the ACM 33(3), 489–498 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kendall, D.G.: On the generalized birth-and-death process. Ann. Math. Stat. 19, 1–15 (1948)

    Article  MathSciNet  Google Scholar 

  29. Stamatakis, A.: Raxml-vi-hpc: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006)

    Article  Google Scholar 

  30. Penel, S., Arigon, A.M., Dufayard, J.F., Sertier, A.S., Daubin, V., Duret, L., Gouy, M., Perriere, G.: Databases of homologous gene families for comparative genomics. BMC Bioinformatics 10(suppl. 6), 3 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nguyen, T.H., Doyon, JP., Pointet, S., Arigon Chifolleau, AM., Ranwez, V., Berry, V. (2012). Accounting for Gene Tree Uncertainties Improves Gene Trees and Reconciliation Inference. In: Raphael, B., Tang, J. (eds) Algorithms in Bioinformatics. WABI 2012. Lecture Notes in Computer Science(), vol 7534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33122-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33122-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33121-3

  • Online ISBN: 978-3-642-33122-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics