Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 100))

  • 5451 Accesses

Abstract

Path integrals in quantum mechanics and statistical mechanics turn into high-dimensional integrals when one discretizes time. The same happens with functional integrals for quantum fields enclosed in a finite box when one discretizes space and time. Thus we are confronted with high-dimensional integrals in quantum statistics, solid-state physics, quantum field theory, high-energy physics and numerous other branches in natural sciences or even the financial market. Beginning with simple numerical integration algorithms we introduce the Monte Carlo integration method with and without important sampling and illustrate the method with several examples. In the last section we recall some useful basic facts about probability theory. At the end we included several short C-programs for calculating integrals with the help of numerical and Monte Carlo algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For a discussion and proof of this law see p. 40.

References

  1. R. Bellman, Dynamic Programming (Princeton University Press, Princeton, 1957)

    MATH  Google Scholar 

  2. F.B. Hildebrand, Introduction to Numerical Analysis (McGraw-Hill, New York, 1956)

    MATH  Google Scholar 

  3. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  4. A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics. Text in Applied Mathematics, vol. 37 (Springer, New York, 2006)

    Google Scholar 

  5. A. Quarteroni, F. Saleri, Scientific Computing with Matlab and Octave (Springer, Berlin, 2006)

    Google Scholar 

  6. R.H. Landau, M.J. Páez, C.C. Bordeianu, Computational Physics (Wiley-VCH, New York, 2007)

    Book  MATH  Google Scholar 

  7. N. Metropolis, S. Ulam, The Monte Carlo method. J. Am. Stat. Assoc. 44, 335 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Weinzierl, Introduction to Monte Carlo methods. Preprint arXiv:hep-ph/0006269v1

  9. S.H. Paskov, J.F. Traub, Faster evaluation of financial derivatives. J. Portf. Manag. 22, 113 (1995)

    Article  Google Scholar 

  10. F.Y. Kuo, I.H. Sloan, Lifting the curse of dimensionality. Not. Am. Math. Soc. 52, 1320 (2005)

    MATH  MathSciNet  Google Scholar 

  11. E. Novak, H. Wozniakovski, in When Are Integration and Discrepancy Tractable? ed. by R.A. DeVore, A. Iserles, E. Süli. Found. of Comp. Math. (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  12. J. Pitman, Probability. Springer Texts in Statistics (Springer, Berlin, 1993)

    Book  MATH  Google Scholar 

  13. P.R. Halmos, Measure Theory. Graduate Texts in Mathematics (Springer, Berlin, 1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wipf, A. (2013). High-Dimensional Integrals. In: Statistical Approach to Quantum Field Theory. Lecture Notes in Physics, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33105-3_3

Download citation

Publish with us

Policies and ethics