Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 100))

Abstract

The functional renormalization group is a particular implementation of the renormalization group concept which combines functional methods of quantum field theory with the renormalization group idea of Kenneth Wilson. It interpolates smoothly between the known microscopic laws and the complex macroscopic phenomena in physical systems. The renormalization group is formulated directly for a continuum field theory—no lattice regularization is required. The flow from microscopic to macroscopic scales is given by technically demanding flow equations. We derive the Polchinski equation for the scale-dependent Schwinger functional and the Wetterich equation for the scale-dependent effective action. We use the latter to calculate the effective potential, ground state energy and energy gap of quantum mechanical systems. Next we consider scalar fields and calculate the flow of the effective potential and several critical exponents in the local potential approximation. Then we present an exact solution for the scale-dependent effective potential of O(N) models and the critical exponents in the large-N limit. All numerical results were obtained with the matlab/octave programs listed at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The calculation in this section were performed with REDUCE 3.8.

  2. 2.

    Private communication by Daniel Litim.

References

  1. K.G. Wilson, The renormalization group: critical phenomena and the Kondo problem. Rev. Mod. Phys. 47, 773 (1975)

    Article  ADS  Google Scholar 

  2. J. Polchinski, Renormalization and effective lagrangians. Nucl. Phys. B 231, 269 (1984)

    Article  ADS  Google Scholar 

  3. T.R. Morris, On truncations of the exact renormalization group. Phys. Lett. B 334, 355 (1994)

    Article  ADS  Google Scholar 

  4. C. Wetterich, Exact evolution equation for the effective potential. Phys. Lett. B 301, 90 (1993)

    Article  ADS  Google Scholar 

  5. K. Aoki, Introduction to the nonperturbative renormalization group and its recent applications. Int. J. Mod. Phys. B 14, 1249 (2000)

    ADS  MATH  Google Scholar 

  6. C. Bagnus, C. Bervillier, Exact renormalization group equations: an introductiory review. Phys. Rep. 348, 91 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  7. J. Berges, N. Tetradis, C. Wetterich, Nonperturbative renormalization flow in quantum field theory and statistical physics. Phys. Rep. 363, 223 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. J. Polonyi, Lectures on the functional renormalization group methods. Cent. Eur. J. Phys. 1, 1 (2003)

    Article  Google Scholar 

  9. J. Pawlowski, Aspects of the functional renormalisation group. Ann. Phys. 322, 2831 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. H. Gies, Introduction to the functional RG and applications to gauge theories, in Renormalization Group and Effective Field Theory Approaches to Many-Body Systems, ed. by A. Schwenk, J. Polonyi. Lect. Notes Phys., vol. 62 (2012)

    Google Scholar 

  11. P. Kopietz, L. Bartosch, F. Schütz, Introduction to the Functional Renormalization Group. Lecture Notes in Physics, vol. 798 (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  12. D. Litim, Optimization of the exact renormalization group. Phys. Lett. B 486, 92 (2000)

    Article  ADS  Google Scholar 

  13. D. Litim, Optimized renormalization group flows. Phys. Rev. D 64, 105007 (2001)

    Article  ADS  Google Scholar 

  14. S.D. Drell, M. Weinstein, S. Yankielowicz, Variational approach to strong coupling theory. 1. ϕ 4 theory. Phys. Rev. D 14, 487 (1976)

    Article  ADS  Google Scholar 

  15. D. Lange, A. Kirchberg, A. Wipf, From the Dirac operator to Wess–Zumino models on spatial lattices. Ann. Phys. 316, 357 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  16. D.F. Litim, J.P. Pawlowski, L. Vergara, Convexity of the effective action from functional flows. arXiv:hep-th/0602140

  17. D. Zappala, Improving the renormalization group approach to the quantum-mechanical double well potential. Phys. Lett. A 290, 35 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. C.M. Bender, T.T. Wu, Anharmonic oscillator. Phys. Rev. D 184, 1231 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  19. T. Morris, The renormalization group and two-dimensional multicritical effective scalar field theory. Phys. Lett. B 345, 139 (1995)

    Article  ADS  Google Scholar 

  20. F. Synatschke, H. Gies, A. Wipf, Phase diagram and fixed-point structure of two dimensional N=1 Wess–Zumino model. Phys. Rev. D 80, 085007 (2009)

    Article  ADS  Google Scholar 

  21. D.F. Litim, Critical exponents from optimized renormalization group flows. Nucl. Phys. B 631, 128 (2002)

    Article  ADS  MATH  Google Scholar 

  22. M. D’Attanasio, T.R. Morris, Large N and the renormalization group. Phys. Lett. B 409, 363 (1997)

    Article  ADS  Google Scholar 

  23. M. Moshe, J. Zinn-Justin, Quantum field theory in the large N limit: a review. Phys. Rep. 385, 69 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. J.P. Blaizot, R. Mendéz-Galain, N. Wschebor, A new method to solve the non perturbative renormalization group equations. Phys. Lett. B 632, 571 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. V. Von Gersdorff, C. Wetterich, Nonperturbative renormalization flow and essential scaling for the Kosterlitz–Thouless transition. Phys. Rev. B 64, 054513 (2001)

    Article  ADS  Google Scholar 

  26. F. Benitez, J.P. Blaizot, H. Chaté, B. Delamotte, R. Méndez-Galain, N. Wschebor, Non-perturbative renormalization group preserving full-momentum dependence: implementation and quantitative evaluation. Phys. Rev. E 85, 026707 (2012)

    Article  ADS  Google Scholar 

  27. M. Hasenbusch, Finite scaling study of lattice models in the three-dimensional Ising universality class. Phys. Rev. B 82, 174433 (2010)

    Article  ADS  Google Scholar 

  28. M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, E. Vicari, Critical exponents and equation of state of the three dimensional Heisenberg universality class. Phys. Rev. B 65, 144520 (2002)

    Article  ADS  Google Scholar 

  29. S. Holtmann, T. Schulze, Critical behavior and scaling functions of the three-dimensional O(6) model. Phys. Rev. E 68, 036111 (2003)

    Article  ADS  Google Scholar 

  30. T. Fischbacher, F. Synatschke-Czerwonka, FlowPy—a numerical solver for functional renormalization group equations. arXiv:1202.5984

  31. N. Tetradis, C. Wetterich, Critical exponents from effective average action. Nucl. Phys. B 422, 541 (1994)

    Article  ADS  Google Scholar 

  32. N. Tetradis, D. Litim, Analytical solutions of exact renormalization group equations. Nucl. Phys. B 464, 492 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. D. Litim, M. Mastaler, F. Synatschke-Czerwonka, A. Wipf, Critical behavior of supersymmetric O(N) models in the large-N limit. Phys. Rev. D 84, 125009 (2011)

    Article  ADS  Google Scholar 

  34. J. Braun, H. Gies, D. Scherer, Asymptotic safety: a simple example. Phys. Rev. D 83, 085012 (2011)

    Article  ADS  Google Scholar 

  35. H. Gies, C. Wetterich, Renormalization flow of bound states. Phys. Rev. D 65, 065001 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  36. J. Braun, Fermion interaction and universal behavior in strongly interacting theories. J. Phys. G 39, 033001 (2012)

    Article  ADS  Google Scholar 

  37. M. Reuter, C. Wetterich, Effective average action for gauge theories and exact evolution equations. Nucl. Phys. B 417, 181 (1994)

    Article  ADS  Google Scholar 

  38. U. Ellwanger, Flow equations and BRS invariance for Yang–Mills theories. Phys. Lett. B 335, 364 (1994)

    Article  ADS  Google Scholar 

  39. H. Gies, Running coupling in Yang–Mills theory: a flow equation study. Phys. Rev. D 66, 025006 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  40. D. Litim, J. Pawlowski, Wilsonian flows and background fields. Phys. Lett. B 546, 279 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. M. Reuter, Nonperturbative evolution equation for quantum gravity. Phys. Rev. 57, 971 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  42. M. Reuter, M. Niedermeier, The asymptotic safety scenario in quantum gravity. Living Rev. Relativ. 9 (2006)

    Google Scholar 

  43. M. Reuter, F. Saueressing, Functional renormalization group equations, asymptotic safety and quantum Einstein gravity. arXiv:0708.1317

  44. M. Bonini, F. Vian, Wilson renormalization group for supersymmetric gauge theories and gauge anomalies. Nucl. Phys. B 532, 473 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. F. Synatschke, J. Braun, A. Wipf, N=1 Wess Zumino model in d=3 at zero and finite temperature. Phys. Rev. D 81, 125001 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix: A Momentum Integral

Appendix: A Momentum Integral

In this appendix we calculate the O(p 2) contribution to the integral

$$ F(p)=\int\mathrm{d}^d q\, \partial_k \bigl \{Z_kR_k(q) \bigr\} G^2_0(q) G_0(p+q) $$
(12.116)

for the optimized regulator function (12.10). The integrand is only non-zero for q 2k 2 and in this region

$$ \partial_k \bigl\{Z_kR_k(q) \bigr\} G^2_0(q)= \bigl( \bigl(k^2-q^2 \bigr)\partial_k Z_k+2kZ_k \bigr) \varDelta_0^2 . $$
(12.117)

To proceed we need to consider two cases: |p+q|≤k and |p+q|>k separately.

The Case |p+q|<k

This is the region located inside of both spheres in Fig. 12.11 where the Green function G 0(q)=G 0(p+q)=Δ 0 is independent of the integration variable q. Let us decompose this variable as q=q +q , where q is parallel and q perpendicular to the fixed momentum p. Then the integral has the form

$$ I_1=\operatorname{Vol} (S_{d-2} )\varDelta_0^3 \int\mathrm{d}q_\parallel\int\mathrm{d}\vert q_\perp\vert \vert q_\perp\vert^{d-2} \bigl( \bigl(k^2-q^2 \bigr)\partial_k Z_k+2kZ_k \bigr) , $$
(12.118)

where \(q^{2}=q_{\parallel}^{2}+q_{\perp}^{2}\). The volume of the unit sphere S d−2⊂ℝd−1 originates from the integration over the directions of q . Now we split the integration domain inside of both spheres, the region marked gray in Fig. 12.11, into two spherical caps,

The domain of integration in (12.118) is just the union of these two caps. After a shift q q p in the integral over the second cap we are left with the one-dimensional integral

Its second derivative with respect to p at p=0 is

$$ \frac{\mathrm{d}^2 I_1}{\mathrm{d}p^2} \bigg\vert_{p=0}=-k^dV(B_d) \varDelta_0^3 \partial_k Z_k . $$
(12.119)
Fig. 12.11
figure 17

Sketch of the integration regions in momentum space. Only momenta inside of the ball centered at the origin contribute to the integral. The Green functions are constant in the gray region inside of both spheres. Inside the sickle-shaped light-gray region G 0(p,q) is momentum dependent. The two spheres intersect at the lower-dimensional sphere defined by \(\{q_{\parallel}^{*},q_{\perp}^{*} \}= \{-p/2,k^{2}-p^{2}/4\}\)

The Case |p+q|<k

This is the sickle-shaped region inside of the sphere centered at the origin but outside the displaced sphere, marked light-gray in Fig. 12.11. The integral over this region can be written as a difference of two integrals as follows:

The integrand of both integrals is

$$h(q_\parallel,q_\perp)=\frac{ (k^2-q_\parallel^2-q_\perp^2 )\partial_k Z_k +2kZ_k}{Z_k(q_\parallel+p)^2+Z_k q_\perp^2+a_2} . $$

It is convenient to shift the variable q in the second integral by −p such that

The second derivative of this integral with respect to p at p=0 is given by

$$ \frac{\mathrm{d}^2 I_2}{\mathrm{d}p^2} \bigg\vert_{p=0}=k^dV(B_d) \varDelta_0^4 \bigl(a\partial_k Z_k+k^2 Z_k\partial_k Z_k-2kZ_k^2 \bigr) . $$
(12.120)

Adding the two results (12.119) and (12.120) leads to the simple expression

$$ \frac{\mathrm{d}^2 F}{\mathrm{d}p^2} \bigg\vert_{p=0}=-2k^{d+1}V(B_d) \varDelta_0^4 Z^2_k $$
(12.121)

for the curvature of F(p) in (12.116) at the origin in momentum space.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wipf, A. (2013). Functional Renormalization Group. In: Statistical Approach to Quantum Field Theory. Lecture Notes in Physics, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33105-3_12

Download citation

Publish with us

Policies and ethics