Skip to main content

Adapting Numerical Representations of Lung Contours Using Case-Based Reasoning and Artificial Neural Networks

  • Conference paper
Case-Based Reasoning Research and Development (ICCBR 2012)

Abstract

In case of a radiological emergency situation involving accidental human exposure, a dosimetry evaluation must be established as soon as possible. In most cases, this evaluation is based on numerical representations and models of subjects. Unfortunately, personalised and realistic human representations are often unavailable for the exposed subjects. However, accuracy of treatment depends on the similarity of the phantom to the subject. The EquiVox platform (Research of Equivalent Voxel phantom) developed in this study uses Case-Based Reasoning principles to retrieve and adapt, from among a set of existing phantoms, the one to represent the subject. This paper introduces the EquiVox platform and Artificial Neural Networks developed to interpolate the subject’s 3D lung contours. The results obtained for the choice and construction of the contours are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Broggio, D., Zhang, B., de Carlan, L., Desbrée, A., Lamart, S., le Guen, B., Bailloeuil, C., Franck, D.: Analytical and Monte Carlo assessment of activity and local dose after a wound contamination by activation products. Health Phys. 96, 155–163 (2009)

    Article  Google Scholar 

  2. Huet, C., Lemosquet, A., Clairand, I., Rioual, J.B., Franck, D., de Carlan, L., Aubineau-Lanièce, I., Bottollier-Depois, J.F.: SESAME: a software tool for the numerical dosimetric reconstruction of radiological accidents involving external sources and its application to the accident in Chile in December 2005. Health Phys. 96, 76–83 (2009)

    Article  Google Scholar 

  3. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann Publishers (1993)

    Google Scholar 

  4. McCulloch, W., Pitts, W.: A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  5. ICRP89. Basic anatomical and physiological data for use in radiological protection. International Commission on Radiological Protection Publication 89 (2002)

    Google Scholar 

  6. Farah, J., Broggio, D., Franck, D.: Examples of Mech and NURBS phantoms to study the morphology effect over in vivo lung counting. Radiation Protection and Dosimetry Special Issue 144, 344–348 (2011)

    Article  Google Scholar 

  7. Bichindaritz, I.: Case-Based Reasoning in the Health Sciences: Why It Matters for the Health Sciences and for CBR. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 1–17. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Diaz, F., Fdze-Riverola, F., Corchado, J.M.: Gene-CBR: A Case-Based Reasoning Tool for Cancer Diagnosis using Microarray Datasets. In: Computational Intelligence, pp. 254–258 (2006)

    Google Scholar 

  9. El Balaa, Z., Strauss, A., Uziel, P., Maximini, K., Traphoner, R.: FM-Ultranet: A Decision Support System Using Case-Based Reasoning Applyied to Ultrasono-graphy. In: McGinty, L. (ed.) Workshop Proceedings of the Fifth International Conference on Case-Based Reasoning, pp. 37–44. NTNU, Trondheim (2003)

    Google Scholar 

  10. Monati, S.: Case-Based Reasoning for Managing Non-Compliance with Clinical Guidelines. In: Wilson, D.C., Khemani, D. (eds.) Proceedings of Case-Based Reasoning in Health Science Workshop, ICCBR, Belfast, pp. 325–336 (2007)

    Google Scholar 

  11. Bichindaritz, I.: Prototypical Cases for Knowledge Maintenance in Biomedical CBR. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 492–506. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Little, S., Colatino, S., Salvetti, O., Perner, P.: Can Prototype-Based Classification be a good Method for Biomedical Applications? Trans. MLDM (MLDM) 2(1), 44–61 (2009)

    Google Scholar 

  13. D’Aquin, M., Lieber, J., Napoli, A.: Adaptation Knowledge Acquisition: A Case Study for Case-Based Decision Support in Oncology. In: Computational Intelligence, pp. 161–176 (2006)

    Google Scholar 

  14. McNeel. Rhinoceros Modeling tools for designers, http://www.rhino3d.com

  15. Christensen, G.E.: Deformable shape models for anatomy. Washington University. PhD Thesis (1994)

    Google Scholar 

  16. Clairand, I., Bouchet, L.G., Ricard, M., Durigon, M., Di Paola, M., Aubert, B.: Improvment of internal dose calculations using mathematical models of different adult heights. Phys. Med. Biol. 45, 2771–2785 (2000)

    Article  Google Scholar 

  17. Cordier, A., Fuschs, B., Mille, A.: Engineering and learning of adaptation knowledge and Case-Based Reasoning. In: Proceedings of the 15th International Conference on Knowledge Engineering and Knowledge Management, EAKW 2006, pp. 303–317. Springer (2006)

    Google Scholar 

  18. Hsieh, W.: Learning Methods in the Environmental Sciences - Neural Networks and Kernels. Cambridge University Press (2009)

    Google Scholar 

  19. Ponce, J., Brette, R.: Polynomial interpolation. Introduction to scientific computing and its applications, http://audition.ens.fr/brette/calculscientifique/2006-2007/lecture2.pdf

  20. Digiteo. Scilab Home Page, http://www.scilab.org

  21. (CEN), European Committee for Standardization: Size designation of clothes: -part 1. Terms definitions and body measurement procedure. EN 13402-1 (ISO 3635: 1981 modified) (2001)

    Google Scholar 

  22. Robinette, K.M.: CAESAR. measures up. Ergonomics in Design 8(3), 17–23 (2000)

    Article  Google Scholar 

  23. Kramer, G.H., Burns, L.C.: Evaluation of the effect of chest wall thickness, tissue composition and photon energy on the quantity muscle equivalent chest-wall-thickness by Monte Carlo simulation. Radiat. Prot. Dosim. 82, 115–124 (1999)

    Article  Google Scholar 

  24. Chatterjee, N., Campbell, J.A.: Interpolation as a means of fast adaptation in case-based problem solving. In: Bergmann, R., Wilke, W. (eds.) 1st German Workshop on Case-Based Reasonning, Kaiserslautern, Germany, pp. 65–74 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Henriet, J. et al. (2012). Adapting Numerical Representations of Lung Contours Using Case-Based Reasoning and Artificial Neural Networks. In: Agudo, B.D., Watson, I. (eds) Case-Based Reasoning Research and Development. ICCBR 2012. Lecture Notes in Computer Science(), vol 7466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32986-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32986-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32985-2

  • Online ISBN: 978-3-642-32986-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics