Skip to main content

A Meshfree Splitting Method for Soliton Dynamics in Nonlinear Schrödinger Equations

  • Conference paper
  • First Online:
Meshfree Methods for Partial Differential Equations VI

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 89))

  • 2137 Accesses

Abstract

A new method for the numerical simulation of the so-called soliton dynamics arising in a nonlinear Schrödinger equation in the semi-classical regime is proposed. For the time discretization a classical fourth-order splitting method is used. For the spatial discretization, however, a meshfree method is employed in contrast to the usual choice of (pseudo) spectral methods. This approach allows one to keep the degrees of freedom almost constant as the semi-classical parameter \(\epsilon \) becomes small. This behavior is confirmed by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.H. Al-Mohy, N.J. Higham, Computing the action of the matrix exponential, with an application to exponential integrators. SIAM J. Sci. Comput. 33, 488–511 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. W. Bao, Q. Du, Computing the ground state solution of Bose–Einstein condensates by a normalized gradient flow. SIAM J. Sci. Comput. 25 1674–1697 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. W. Bao, J. Shen, A fourth-order time-splitting Laguerre–Hermite pseudospectral method for Bose–Einstein condensates. SIAM J. Sci. Comput. 26 2010–2028 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Bao, D. Jaksch, P. Markowich, Numerical solution of the Gross–Pitaevskii equation for Bose–Einstein condensation. J. Comp. Phys. 187 318–342 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Bergamaschi, M. Caliari, M. Vianello, Interpolating discrete advection-diffusion propagators at Leja sequences. J. Comput. Appl. Math. 172, 79–99 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Besse, B. Bidégaray, S. Descombes, Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40, 26–40 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Blanes, P.C. Moan, Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods. J. Comput. Appl. Math. 142 313–330 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Bronski, R. Jerrard, Soliton dynamics in a potential. Math. Res. Lett. 7, 329–342 (2000)

    MathSciNet  MATH  Google Scholar 

  9. M.D. Buhmann, Radial Basis Functions: Theory and Implementations (Cambridge University Press, Cambridge, 2003)

    MATH  Google Scholar 

  10. M. Caliari, M. Squassina, Numerical computation of soliton dynamics for NLS equations in a driving potential. Electron. J. Differ. Equ. 89, 1–12 (2010)

    MathSciNet  Google Scholar 

  11. M. Caliari, C. Neuhauser, M. Thalhammer, High-order time-splitting Hermite and Fourier spectral methods for the Gross–Pitaevskii equation. J. Comput. Phys. 228, 822–832 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Caliari, A. Ostermann, S. Rainer, M. Thalhammer, A minimisation approach for computing the ground state of Gross–Pitaevskii systems. J. Comput. Phys. 228, pp. 349–360 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Caliari, A. Ostermann, S. Rainer, Meshfree Exponential Integrators, to appear in SIAM J. Sci. Comput. (2011)

    Google Scholar 

  14. M. Caliari, A. Ostermann, S. Rainer, Meshfree integrators. Oberwolfach Rep. 8, 883–885 (2011)

    Google Scholar 

  15. G.E. Fasshauer, Meshfree Approximation Methods with MATLAB (World Scientific, Hackensack, 2007)

    MATH  Google Scholar 

  16. M. Hochbruck, A. Ostermann, Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis (European Mathematical Society, Zürich, 2008)

    Book  MATH  Google Scholar 

  18. R. Schaback, Creating surfaces from scattered data using radial basis functions, in Mathematical Methods for Curves and Surfaces, ed. by M. Dæhlen, T. Lyche, L.L. Schumaker (Vanderbilt University Press, Nashville, 1995), pp. 477–496

    Google Scholar 

  19. H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Wendland, Scattered Data Approximation (Cambridge University Press, Cambridge, 2005)

    MATH  Google Scholar 

  21. Z. Wu, Compactly supported positive definite radial functions. Adv. Comput. Math. 4 283–292 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of Stefan Rainer was partially supported by the Tiroler Wissenschaftsfond grant UNI-0404/880.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Rainer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caliari, M., Ostermann, A., Rainer, S. (2013). A Meshfree Splitting Method for Soliton Dynamics in Nonlinear Schrödinger Equations. In: Griebel, M., Schweitzer, M. (eds) Meshfree Methods for Partial Differential Equations VI. Lecture Notes in Computational Science and Engineering, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32979-1_8

Download citation

Publish with us

Policies and ethics