Skip to main content

Quasi-stability versus Genericity

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7442))

Included in the following conference series:

Abstract

Quasi-stable ideals appear as leading ideals in the theory of Pommaret bases. We show that quasi-stable leading ideals share many of the properties of the generic initial ideal. In contrast to genericity, quasi-stability is a characteristic independent property that can be effectively verified. We also relate Pommaret bases to some invariants associated with local cohomology, exhibit the existence of linear quotients in Pommaret bases and prove some results on componentwise linear ideals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aramova, A., Herzog, J.: Almost regular sequences and Betti numbers. Amer. J. Math. 122, 689–719 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aramova, A., Herzog, J., Hibi, T.: Ideals with stable Betti numbers. Adv. Math. 152, 72–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bayer, D., Charalambous, H., Popescu, S.: Extremal Betti numbers and applications to monomial ideals. J. Alg. 221, 497–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bayer, D., Stillman, M.: A criterion for detecting m-regularity. Invent. Math. 87, 1–11 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bayer, D., Stillman, M.: A theorem on refining division orders by the reverse lexicographic orders. Duke J. Math. 55, 321–328 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bermejo, I., Gimenez, P.: Saturation and Castelnuovo-Mumford regularity. J. Alg. 303, 592–617 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caviglia, G., Sbarra, E.: Characteristic-free bounds for the Castelnuovo-Mumford regularity. Compos. Math. 141, 1365–1373 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. CoCoATeam: CoCoA: a system for doing Computations in Commutative Algebra, http://cocoa.dima.unige.it

  9. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer, New York (1995)

    MATH  Google Scholar 

  10. Galligo, A.: A propos du théorème de préparation de Weierstrass. In: Norguet, F. (ed.) Fonctions de Plusieurs Variables Complexes. Lecture Notes in Mathematics, vol. 409, pp. 543–579. Springer, Berlin (1974)

    Chapter  Google Scholar 

  11. Galligo, A.: Théorème de division et stabilité en géometrie analytique locale. Ann. Inst. Fourier 29(2), 107–184 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gerdt, V., Blinkov, Y.: Involutive bases of polynomial ideals. Math. Comp. Simul. 45, 519–542 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Green, M.: Generic initial ideals. In: Elias, J., Giral, J., Miró-Roig, R., Zarzuela, S. (eds.) Six Lectures on Commutative Algebra. Progress in Mathematics, vol. 166, pp. 119–186. Birkhäuser, Basel (1998)

    Google Scholar 

  14. Guillemin, V., Sternberg, S.: An algebraic model of transitive differential geometry. Bull. Amer. Math. Soc. 70, 16–47 (1964), (With a letter of Serre as appendix)

    Google Scholar 

  15. Hausdorf, M., Sahbi, M., Seiler, W.: δ- and quasi-regularity for polynomial ideals. In: Calmet, J., Seiler, W., Tucker, R. (eds.) Global Integrability of Field Theories, pp. 179–200. Universitätsverlag Karlsruhe, Karlsruhe (2006)

    Google Scholar 

  16. Herzog, J., Hibi, T.: Componentwise linear ideals. Nagoya Math. J. 153, 141–153 (1999)

    MathSciNet  MATH  Google Scholar 

  17. Herzog, J., Hibi, T.: Monomial Ideals. Graduate Texts in Mathematics, vol. 260. Springer, London (2011)

    Book  MATH  Google Scholar 

  18. Herzog, J., Kühl, M.: On the Bettinumbers of finite pure and linear resolutions. Comm. Alg. 12, 1627–1646 (1984)

    Article  MATH  Google Scholar 

  19. Herzog, J., Popescu, D., Vladoiu, M.: On the Ext-modules of ideals of Borel type. In: Commutative Algebra. Contemp. Math, vol. 331, pp. 171–186. Amer. Math. Soc., Providence (2003)

    Chapter  Google Scholar 

  20. Herzog, J., Takayama, Y.: Resolutions by mapping cones. Homol. Homot. Appl. 4, 277–294 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Mall, D.: On the relation between Gröbner and Pommaret bases. Appl. Alg. Eng. Comm. Comp. 9, 117–123 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nagel, U., Römer, T.: Criteria for componentwise linearity. Preprint arXiv:1108.3921 (2011)

    Google Scholar 

  23. Schenzel, P., Trung, N., Cuong, N.: Verallgemeinerte Cohen-Macaulay-Moduln. Math. Nachr. 85, 57–73 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. Seiler, W.: A combinatorial approach to involution and δ-regularity I: Involutive bases in polynomial algebras of solvable type. Appl. Alg. Eng. Comm. Comp. 20, 207–259 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Seiler, W.: A combinatorial approach to involution and δ-regularity II: Structure analysis of polynomial modules with Pommaret bases. Appl. Alg. Eng. Comm. Comp. 20, 261–338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Seiler, W.: Involution — The Formal Theory of Differential Equations and its Applications in Computer Algebra. Algorithms and Computation in Mathematics, vol. 24. Springer, Berlin (2009)

    Google Scholar 

  27. Seiler, W.: Effective genericity, δ-regularity and strong Noether position. Comm. Alg. (to appear)

    Google Scholar 

  28. Sharifan, L., Varbaro, M.: Graded Betti numbers of ideals with linear quotients. Matematiche 63, 257–265 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Trung, N.: Gröbner bases, local cohomology and reduction number. Proc. Amer. Math. Soc. 129, 9–18 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hashemi, A., Schweinfurter, M., Seiler, W.M. (2012). Quasi-stability versus Genericity. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2012. Lecture Notes in Computer Science, vol 7442. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32973-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32973-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32972-2

  • Online ISBN: 978-3-642-32973-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics