Skip to main content

The Maslov Index and Global Bifurcation for Nonlinear Boundary Value Problems

  • Chapter
  • First Online:
Stability and Bifurcation Theory for Non-Autonomous Differential Equations

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2065))

  • 1816 Accesses

Abstract

We first describe the notion of Maslov index and relate it to the concepts of moment of verticality and of phase-angles. We then illustrate the role of the Maslov index in the development of global bifurcation results for nonlinear first order differential systems in \({\mathbb{R}}^{2N}\) and for nonlinear planar Dirac-type systems.

Lectures given by the second author at the C.I.M.E. course “Stability and Bifurcation for nonautonomous differential equations”, Cetraro, Italy, June 20–June 25, 2011.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Lectures given by the second author at the C.I.M.E. course “Stability and Bifurcation for non-autonomous differential equations”, Cetraro, Italy, June 20–June 25, 2011.

References

  1. A. Abbondandolo, Morse Theory for Hamiltonian systems. Research Notes in Mathematics (Chapman & Hall, CRC, Boca Raton, 2001)

    Google Scholar 

  2. V.I. Arnold, On a characteristic class entering in a quantum condition. Funct. Anal. Appl. 1, 1–14 (1967)

    Article  Google Scholar 

  3. F.V. Atkinson, Discrete and Continuous Boundary Problems (Academic Press, London, 1964)

    MATH  Google Scholar 

  4. M. Audin, A. Cannas da Silva, E. Lerman, in Symplectic Geometry of Integrable Hamiltonian Systems. Lectures delivered at the Euro Summer School held in Barcelona, July 10–15, 2001. Advanced Courses in Mathematics. CRM Barcelona (Birkhäuser, Basel, 2003)

    Google Scholar 

  5. M. Balabane, T. Cazenave, L. Vázquez, Existence of standing waves for Dirac fields with singular nonlinearities. Comm. Math. Phys. 133, 53–74 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Bereanu, On a multiplicity result of J. R. Ward for superlinear planar systems. Topological Meth. Nonlinear Anal. 27, 289–298 (2006)

    MathSciNet  MATH  Google Scholar 

  7. A. Boscaggin, Global bifurcation and topological invariants for nonlinear boundary value problems, Thesis, University of Torino, 2008

    Google Scholar 

  8. A. Boscaggin, A. Capietto, Infinitely many solutions to superquadratic planar Dirac-type systems. Discrete Contin. Dynam. Syst. Differential Equations and Applications. 7th AIMS Conference, Supplement 72–81 (2009)

    Google Scholar 

  9. A. Boscaggin, M. Garrione, A note on a linear spectral theorem for a class of first order systems in \({\mathbb{R}}^{2N}\). Electron. J. Qual. Theor. Differ. Equat. 75, 1–22 (2010)

    Google Scholar 

  10. A. Capietto, W. Dambrosio, Preservation of the Maslov index along bifurcating branches of solutions of first order systems in \({\mathbb{R}}^{N}\). J. Differ. Equat. 227, 692–713 (2006)

    Google Scholar 

  11. A. Capietto, W. Dambrosio, Planar Dirac-type systems: the eigenvalue problem and a global bifurcation result. J. Lond. Math. Soc. 81, 477–498 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Capietto, W. Dambrosio, D. Papini, Global bifurcation for singular planar Dirac-type systems. Submitted

    Google Scholar 

  13. S.E. Cappell, R. Lee, E.Y. Miller, On the Maslov index. Comm. Pure Appl. Math. 47, 121–186 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Chardrard, Stabilité des ondes solitaires, Ph. D. Thesis, Ecole Normale Supérieure de Cachan, 2009

    Google Scholar 

  15. C.N. Chen, X. Hu, Maslov index for homoclinic orbits of Hamiltonian systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 24, 589–603 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. C. Conley, An oscillation theorem for linear systems with more than one degree of freedom, IBM Technical Report 18004, IBM Watson Research Center, New York, 1972

    Google Scholar 

  17. C. Conley, E. Zehnder, Morse-type index theory for flows and periodic solutions for Hamiltonian equations. Comm. Pure Appl. Math. 37, 207–253 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Dong, Maslov type index theory for linear Hamiltonian systems with Bolza boundary value conditions and multiple solutions for nonlinear Hamiltonian systems. Pac. J. Math. 221, 253–280 (2005)

    Article  MATH  Google Scholar 

  19. J.J. Duistermaat, On the Morse index in variational calculus. Adv. Math. 21, 173–195 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  20. N. Dunford, J. Schwartz, Linear Operators - Part II: spectral theory Interscience Publishers, New York, 1963

    MATH  Google Scholar 

  21. M.S.P. Eastham, The Asymptotic Solution of Linear Differential Systems. London Mathematical Society Monographs. New Series, 4. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1989

    Google Scholar 

  22. I. Ekeland, Convexity Methods in Hamiltonian Mechanics (Springer, Berlin, 1990)

    Book  MATH  Google Scholar 

  23. M.J. Esteban, An overview on linear and nonlinear Dirac equations. Discrete Contin. Dynam. Syst. 8, 381–397 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. R. Fabbri, R. Johnson, C. Nunez, Rotation number for non-autonomous linear Hamiltonian systems. I: Basic properties. Z. Angew. Math. Phys. 54, 484–501 (2003)

    MathSciNet  MATH  Google Scholar 

  25. M. Fitzpatrick, J. Pejsachowicz, C. Stuart, Spectral flow for paths of unbounded operators and bifurcation of critical points (in preparation)

    Google Scholar 

  26. L. Greenberg, A Pr\(\mathrm{\ddot{u}}\)fer method for calculating eigenvalues of self-adjoint systems of ordinary differential equations. Part I. Technical Report, Department of Mathematics, University of Maryland, 1991. Available from the authors

    Google Scholar 

  27. R. Johnson, J. Moser, The rotation number for almost periodic potentials. Comm. Math. Phys. 84, 403–438 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Johnson, M. Nerurkar, Exponential dichotomy and rotation number for linear hamiltonian systems. J. Differ. Equat. 108, 201–216 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1995)

    MATH  Google Scholar 

  30. J. Kellendonk, S. Richard, The topological meaning of Levinson’s theorem, half-bound states included. J. Phys. A 41, 7 (2008)

    Article  MathSciNet  Google Scholar 

  31. C.G. Liu, Maslov-type index theory for symplectic paths with Lagrangian boundry conditions. Adv. Nonlinear Stud. 7, 131–161 (2007)

    MathSciNet  MATH  Google Scholar 

  32. V.B. Lidskiy, Oscillation theorems for canonical systems of differential equations. NASA Technical Translation TT-F-14696 (1973). (Russian) Dokl. Akad. Nauk SSSR (N.S.) 102, 877–880 (1955)

    Google Scholar 

  33. Y. Long, Index Theory for Symplectic Paths with Applications (Birkhäuser, Basel, 2002)

    Book  MATH  Google Scholar 

  34. Z.-Q. Ma, The Levinson theorem. J. Phys. A 39, 625–659 (2006)

    Article  Google Scholar 

  35. A. Margheri, C. Rebelo, F. Zanolin, Maslov index, Poincaré-Birkhoff theorem and periodic solutions of asymptotically linear planar Hamiltonian systems. J. Differ. Equat. 183, 342–367 (2002)

    MathSciNet  MATH  Google Scholar 

  36. V.P. Maslov, Théorie des perturbations et méthodes asymptotiques (Dunod, Paris, 1972)

    MATH  Google Scholar 

  37. J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems (Springer, New York, 1989)

    MATH  Google Scholar 

  38. D. McDuff, D. Salamon, Introduction to Symplectic Topology (Oxford University Press, New York, 1998)

    MATH  Google Scholar 

  39. M. Musso, J. Pejsachowicz, A. Portaluri, Morse index and bifurcation of p-geodesics on semi Riemannian manifolds. ESAIM Contr. Optim. Calc. Var. 13, 598–621 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. P. Piccione, D.V. Tausk, An index theorem for non-periodic solutions of Hamiltonian systems. Proc. Lond. Math. Soc. (3) 83, 351–389 (2001)

    Google Scholar 

  41. A. Portaluri, Maslov index for Hamiltonian systems. Electron. J. Differ. Equat. 237, 85–124 (2001)

    Google Scholar 

  42. P.J. Rabier, C. Stuart, Global bifurcation for quasilinear elliptic equations on \({\mathbb{R}}^{N}\). Math. Z. 237, 85–124 (2001)

    Google Scholar 

  43. P.H. Rabinowitz, Some aspects of nonlinear eigenvalue problems. Rocky Mt. J. Math. 3, 161–202 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Robbin, D. Salamon, The Maslov index for paths. Topology 32, 827–844 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Robbin, D. Salamon, The spectral flow and the Maslov index. Bull. Lond. Math. Soc. 27, 1–33 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  46. H. Schmid, C. Tretter, Singular Dirac systems and Sturm-Liouville problems nonlinear in the spectral parameter. J. Differ. Equat. 181, 511–542 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  47. S. Secchi, C. Stuart, Global bifurcation of homoclinic solutions of Hamiltonian systems. Discrete Contin. Dynam. Syst. 9, 1493–1518 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. G.R. Sell, Topological Dynamics and Ordinary Differential Equations (Van Nostrand Reinhold Co., London, 1971)

    MATH  Google Scholar 

  49. Stuart C., Global properties of components of solutions of non-linear second order differential equations on the half-line. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2, 265–286 (1975)

    Google Scholar 

  50. B. Thaller, The Dirac Equation (Springer, Berlin, 1992)

    Google Scholar 

  51. J. Ward Jr., Rotation numbers and global bifurcation in systems of ordinary differential equations. Adv. Nonlinear Stud. 5, 375–392 (2005)

    MathSciNet  MATH  Google Scholar 

  52. J. Ward Jr., Existence, multiplicity, and bifurcation in systems of ordinary differential equations. Electron. J. Differ. Equat. Conf. 15, 399–415 (2007)

    Google Scholar 

  53. J. Weidmann, Linear Operators in Hilbert Spaces (Springer, New York, 1980)

    Book  MATH  Google Scholar 

  54. J. Weidmann, Spectral Theory of Ordinary Differential Equations. Lectures Notes in Mathematics, 1258 Springer-Verlag, Berlin (1987)

    Google Scholar 

  55. V.A. Yakubovich, V.M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, New York, 1975)

    MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank J. Pejsachowicz for introducing us to the study of the Maslov index and for many fruitful conversations. The second author wishes to thank the C.I.M.E. foundation and the course directors R. Johnson and M.P. Pera for the kind invitation to deliver these lectures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Capietto .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boscaggin, A., Capietto, A., Dambrosio, W. (2013). The Maslov Index and Global Bifurcation for Nonlinear Boundary Value Problems. In: Stability and Bifurcation Theory for Non-Autonomous Differential Equations. Lecture Notes in Mathematics(), vol 2065. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32906-7_1

Download citation

Publish with us

Policies and ethics