Skip to main content

Heterotic Computing Examples with Optics, Bacteria, and Chemicals

  • Conference paper
Unconventional Computation and Natural Computation (UCNC 2012)

Abstract

Unconventional computers can perform embodied computation that can directly exploit the natural dynamics of the substrate. But such in materio devices are often limited, special purpose machines. To be practically useful, unconventional devices are usually be combined with classical computers or control systems. However, there is currently no established way to do this, or to combine different unconventional devices.

In this position paper we describe heterotic unconventional computation, an approach that focusses on combinations of unconventional devices. This will need a sound semantic framework defining how diverse unconventional computational devices can be combined in a way that respects the intrinsic computational power of each, whilst yielding a hybrid device that is capable of more than the sum of its parts. We also describe a suite of diverse physical implementations of heterotic unconventional computers, comprising computation performed by bacteria hosted in chemically built material, sensed and controlled optically and chemically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamatzky, A., Costello, B.D.L., Asai, T.: Reaction-Diffusion Computers. Elsevier (2005)

    Google Scholar 

  2. Caulfield, H.J., Kinser, J.M., Rogers, S.K.: Optical neural networks. Proceedings of the IEEE 77, 1573–1582 (1989)

    Article  Google Scholar 

  3. Farhat, N.H., Psaltis, D.: New approach to optical information processing based on the Hopfield model. Journal of the Optical Society of America A 1, 1296 (1984)

    Google Scholar 

  4. Huang, A.: Architectural considerations involved in the design of an optical digital computer. Proceedings of the IEEE 72(7), 780–786 (1984)

    Article  Google Scholar 

  5. Javidi, B.: Nonlinear joint power spectrum based optical correlation. Applied Optics 28(12), 2358–2367 (1989)

    Article  Google Scholar 

  6. Karim, M.A., Awwal, A.A.S.: Optical Computing: An Introduction. Wiley (1992)

    Google Scholar 

  7. Kendon, V., Sebald, A., Stepney, S., Bechmann, M., Hines, P., Wagner, R.C.: Heterotic Computing. In: Calude, C.S., Kari, J., Petre, I., Rozenberg, G. (eds.) UC 2011. LNCS, vol. 6714, pp. 113–124. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Naughton, T.J., Woods, D.: Optical computing (invited). In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 6388–6407. Springer (2009)

    Google Scholar 

  9. Naughton, T., Javadpour, Z., Keating, J., Klíma, M., Rott, J.: General-purpose acousto-optic connectionist processor. Optical Engineering 38(7), 1170–1177 (1999)

    Article  Google Scholar 

  10. Stepney, S.: The neglected pillar of material computation. Physica D: Nonlinear Phenomena 237(9), 1157–1164 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Stepney, S.: Nonclassical computation: a dynamical systems perspective. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, vol. II, ch. 52. Springer (2011)

    Google Scholar 

  12. Stepney, S., Abramsky, S., Adamatzky, A., Johnson, C., Timmis, J.: Grand challenge 7: Journeys in non-classical computation. In: Visions of Computer Science, London, UK, pp. 407–421. BCS (September 2008)

    Google Scholar 

  13. Stepney, S., Braunstein, S.L., Clark, J.A., Tyrrell, A., Adamatzky, A., Smith, R.E., Addis, T., Johnson, C., Timmis, J., Welch, P., Milner, R., Partridge, D.: Journeys in non-classical computation I: A grand challenge for computing research. International Journal of Parallel, Emergent and Distributed Systems 20(1), 5–19 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Stepney, S., Braunstein, S.L., Clark, J.A., Tyrrell, A., Adamatzky, A., Smith, R.E., Addis, T., Johnson, C., Timmis, J., Welch, P., Milner, R., Partridge, D.: Journeys in non-classical computation II: initial journeys and waypoints. International Journal of Parallel, Emergent and Distributed Systems 21(2), 97–125 (2006)

    Article  MathSciNet  Google Scholar 

  15. Stepney, S., Kendon, V., Hines, P., Sebald, A.: A framework for heterotic computing. In: 8th workshop on Quantum Physics and Logic (QPL 2011). EPTCS (2011)

    Google Scholar 

  16. Szymanski, J., Gorecka, J.N., Igarashi, Y., Gizynski, K., Gorecki, J., Zauner, K.P., de Planque, M.: Droplets with information processing ability. International J. Unconventional Computing 7, 141–158 (2011)

    Google Scholar 

  17. Tabor, J.J., Levskaya, A., Voigt, C.A.: Multichromatic control of gene expression in Escherichia coli. Journal of Molecular Biology 405(2), 315–324 (2011)

    Article  Google Scholar 

  18. VanderLugt, A.: Signal detection by complex spatial filtering. IEEE Transactions on Information Theory 10(2), 139–145 (1964)

    Article  Google Scholar 

  19. Weaver, C.S., Goodman, J.W.: A technique for optically convolving two functions. Applied Optics 5(7), 1248–1249 (1966)

    Article  Google Scholar 

  20. Woods, D., Naughton, T.J.: Optical computing: Photonic neural networks. Nature Physics 8(4), 257–259 (2012)

    Article  Google Scholar 

  21. Yoshikawa, K., Motoike, I.N., Ichino, T., Yamaguchi, T., Igarashi, Y., Gorecki, J., Gorecka, J.N.: Basic information processing operations with pulses of excitation in a reaction-diffusion system. International J. Unconventional Computing 5(1), 3–37 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stepney, S. et al. (2012). Heterotic Computing Examples with Optics, Bacteria, and Chemicals. In: Durand-Lose, J., Jonoska, N. (eds) Unconventional Computation and Natural Computation. UCNC 2012. Lecture Notes in Computer Science, vol 7445. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32894-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32894-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32893-0

  • Online ISBN: 978-3-642-32894-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics