Skip to main content

Parameter Selection Methods in Inverse Problem Formulation

  • Chapter
  • First Online:
Mathematical Modeling and Validation in Physiology

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2064))

Abstract

We discuss methods for a priori selection of parameters to be estimated in inverse problem formulations (such as Maximum Likelihood, Ordinary and Generalized Least Squares) for dynamical systems with numerous state variables and an even larger number of parameters. We illustrate the ideas with an in-host model for HIV dynamics which has been successfully validated with clinical data and used for prediction and a model for the reaction of the cardiovascular system to an ergometric workload.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, B.M.: Non-parametric parameter estimation and clinical data fitting with a model of HIV infection. Ph.D. thesis, North Carolina State University, Raleigh, NC (2005)

    Google Scholar 

  2. Adams, B.M., Banks, H.T., Davidian, M., Kwon, H., Tran, H.T., Wynne, S.N., Rosenberg, E.S.: HIV dynamics: Modeling, data analysis, and optimal treatment protocols. J. Comp. Appl. Math. 184, 10–49 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adams, B.M., Banks, H.T., Davidian, M., Rosenberg, E.S.: Model fitting and prediction with HIV treatment interruption data; CRSC-TR05-40, NCSU, October 2005. Bull. Math. Biol. 69, 563–584 (2007)

    Article  MATH  Google Scholar 

  4. Adams, B.M., Banks, H.T., Tran, H.T., Kwon, H.: Dynamic multidrug therapies for HIV: Optimal and STI control approaches. Math. Biosci. Eng. 1, 223–241 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anh, D.T., Bonnet, M.P., Vachaud, G., Minh, C.V., Prieur, N., Duc, L.V., Anh, L.L.: Biochemical modeling of the Nhue River (Hanoi, Vietnam): Practical identifiability analysis and parameter estimation. Ecol. Model. 193, 182–204 (2006)

    Article  Google Scholar 

  6. Astrom, K.J., Eykhoff, P.: System identification – A survey. Automatica 7, 123–162 (1971)

    Article  MathSciNet  Google Scholar 

  7. Banks, H.T., Davidian, M., Hu, S., Kepler, G.M., Rosenberg, E.S.: Modeling HIV immune response and validation with clinical data; CRSC-TR07-09, March 2007. J Biol. Dyn. 2, 357–385 (2008)

    Article  MathSciNet  Google Scholar 

  8. Banks, H.T., Davidian, M., Samuels, J.R., Sutton, K.L.: An inverse problem statistical methodology summary; CRSC-TR08-1, NCSU, January 2008. In: Chowell G., et al., (eds.) Mathematical and Statistical Estimation Approaches in Epidemiology, pp. 249–302. Springer, New York (2009)

    Chapter  Google Scholar 

  9. Banks, H.T., Dediu, S., Ernstberger, S.E.: Sensitivity functions and their uses in inverse problems; CRSC-TR07-12, NCSU, July, 2007. J. Inverse Ill Posed Probl. 15, 683–708 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Banks, H.T., Dediu, S., Ernstberger, S.L., Kappel, F.: Generalized sensitivities and optimal experimental design; CRSC-TR08-12, NCSU, September 2008, revised, November 2009. J. Inverse Ill Posed Probl. 18, 25–83 (2010)

    MathSciNet  Google Scholar 

  11. Banks, H.T., Ernstberger, S.L., Grove, S.L.: Standard errors and confidence intervals in inverse problems: Sensitivity and associated pitfalls. J. Inverse Ill Posed Probl. 15, 1–18 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Banks, H.T., Fitzpatrick, B.G.: Inverse problems for distributed systems: statistical tests and ANOVA; LCDS/CCS Rep. 88–16, July 1988, Brown University. In: Proc. International Symposium on Math. Approaches to Envir. and Ecol. Problems. Springer Lecture Notes in Biomathematics, vol. 81, pp. 262–273. Springer, New York (1989)

    Google Scholar 

  13. Banks, H.T., Fitzpatrick, B.G.: Statistical methods for model comparison in parameter estimation problems for distributed systems; CAMS Tech. Rep. 89-4, September 1989, University of Southern California. J. Math. Biol. 28, 501–527 (1990)

    Google Scholar 

  14. Banks, H.T., Holm, K., Robbins, D.: Standard error computations for uncertainty quantification in inverse problems: Asymptotic theory vs. bootstrapping; CRSC-TR09-13, NCSU, June 2009, revised August 2009; Math. Comput. Model. 52, 1610–1625 (2010)

    Google Scholar 

  15. Banks, H.T., Samuels Jr., J.R.: Detection of cardiac occlusions using viscoelastic wave propagation; CRSC-TR08-23, December 2008. Adv. Appl. Math. Mech. 1, 1–28 (2009)

    MathSciNet  Google Scholar 

  16. Batzel, J.J., Kappel, F., Schneditz, D., Tran, H.T.: Cardiovascular and Respiratory Systems: Modeling, Analysis and Control. Frontiers in Applied Mathematics, vol. FR34. SIAM, Philadelphia (2006)

    Google Scholar 

  17. Bedrick, E.J., Tsai, C.L.: Model selection for multivariate regression in small samples. Biometrics 50, 226–231 (1994)

    Article  MATH  Google Scholar 

  18. Bellman, R., Astrom, K.M.: On structural identifiability. Math. Biosci. 7, 329–339 (1970)

    Article  Google Scholar 

  19. Bellman, R., Kalaba, R.: Quasilinearization and Nonlinear Boundry Value Problems. American Elsevier, New York (1965)

    Google Scholar 

  20. Bonhoeffer, S., Rembiszewski, M., Ortiz, G.M., Nixon, D.F.: Risks and benefits of structured antiretroviral drug therapy interruptions in HIV-1 infection. AIDS 14, 2313–2322 (2000)

    Article  Google Scholar 

  21. Bozdogan, H.: Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika 52, 345–370 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bozdogan, H.: Akaike’s Information Criterion and recent developments in information complexity. J. Math. Psychol. 44, 62–91 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Burnham, K.P., Anderson, D.R.: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, Berlin, Heidlberg, New York (2002)

    MATH  Google Scholar 

  24. Burnham, K.P., Anderson, D.R.: Multimodel inference: Understanding AIC and BIC in model selection. Socio. Meth. Res. 33, 261–304 (2004)

    Article  MathSciNet  Google Scholar 

  25. Burth, M., Verghese, G.C., Vélez-Reyes, M.: Subset selection for improved parameter estimation in on-line identification of a synchronous generator. IEEE T. Power Syst. 14, 218–225 (1999)

    Article  Google Scholar 

  26. Callaway, D.S., Perelson, A.S.: HIV-1 infection and low steady state viral loads. Bull. Math. Biol. 64, 29–64 (2001)

    Article  Google Scholar 

  27. CintrĂ³n-Arias, A., Banks, H.T., Capaldi, A., Lloyd, A.L.: A sensitivity matrix based methodology for inverse problem formulation; CRSC-TR09, NCSU, April 2009. J. Inverse Ill Posed Probl. 17, 545–564 (2009)

    MathSciNet  MATH  Google Scholar 

  28. CintrĂ³n-Arias, A., Castillo-ChĂ¡vez, C., Bettencourt, L.M.A., Lloyd, A.L., Banks, H.T.: The estimation of the effective reproductive number from disease outbreak data; CRSC-TR08-08, NCSU, April 2008. Math. Biosci. Eng. 6, 261–283 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cobelli, C., DiStefano 3rd, J.J.: Parameter and structural identifiability concepts and ambiguities: a critical review and analysis. Am. J. Physiol. 239, R7–R24 (1980)

    Google Scholar 

  30. Davidian, M., Giltinan, D.M.: Nonlinear Models for Repeated Measurement Data. Chapman & Hall, Boca Raton (1995)

    Google Scholar 

  31. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman & Hall/CRC, Boca Raton (1998)

    Google Scholar 

  32. Engl, H.W., Flamm, C., KĂ¼gler, P., Lu, J., MĂ¼ller, S., Schuster, P.: Inverse problems in system biology. Inverse Probl. 25, 123,014 (51pp.) (2009)

    Google Scholar 

  33. Eslami, M.: Theory of Sensitivity in Dynamic Systems: An Introduction. Springer, New York (1994)

    Google Scholar 

  34. Evans, N.D., White, L.J., Chapman, M.J., Godfrey, K.R., Chappell, M.J.: The structural identifiability of the susceptible infected recovered model with seasonal forcing. Math. Biosci. 194, 175–197 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Eykhoff, P.: System Identification: Parameter and State Estimation. Wiley, New York (1974)

    Google Scholar 

  36. Fink, M.: myAD: fast automatic differentiation code in MATLAB. http://gosh.gmxhome.de/ (2006)

  37. Fink, M., Attarian, A., Tran, H.T.: Subset selection for parameter estimation in an HIV model. Proc. Appl. Math. Mech.7, 11212,501–11221,502 (2008)

    Google Scholar 

  38. Fink, M., Batzel, J.J., Tran, H.T.: A respiratory system model: Parameter estimation and sensitivity analysis. Cardiovasc. Eng. 8, 120–134 (2008)

    Article  Google Scholar 

  39. Glover, K., Willems, J.C.: Parametrizations of linear dynamical systems: Canonical forms and identifiability. IEEE Trans. Automat. Contr. AC-19, 640–645 (1974)

    Article  MathSciNet  Google Scholar 

  40. Holmberg, A.: On the practical identifiability of microbial growth models incorporating Michaelis-Menten type nonlinearities. Math. Biosci. 62, 23–43 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hurvich, C.M., Tsai, C.L.: Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  42. Jones, L.E., Perelson, A.S.: Opportunistic infection as a cause of transient viremia in chronically infected HIV patients under treatment with HAART. Bull. Math. Biol. 67, 1227–1251 (2005)

    Article  MathSciNet  Google Scholar 

  43. Kalman, R.E.: Mathematical description of linear dynamical systems. SIAM J. Contr. 1, 152–192 (1963)

    MathSciNet  MATH  Google Scholar 

  44. Kappel, F., Peer, R.O.: A mathematical model for fundamental regulation processes in the cardiovascular system. J. Math. Biol. 31, 611–631 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  45. Luenberger, D.G.: Optimization by Vector Space Methods. Wiley, New York (1969)

    MATH  Google Scholar 

  46. Mehra, A.K., Lainiotis, D.G.: System Identification. Academic, New York (1976)

    Google Scholar 

  47. Navon, I.M.: Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanograph. Dynam. Atmosp. Oceans 27, 55–79 (1997)

    Article  Google Scholar 

  48. Nelson, P., Smith, N., Cuipe, S., Zou, W., Omenn, G.S., Pietropaolo, M.: Modeling dynamic changes in type 1 diabetes progression: Quantifying β-cell variation after the appearance of islet-specific autoimmune responses. Math. Biosci. Eng. 6, 753–778 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Nowak, M.A., Bangham, C.R.M.: Population dynamics of immune responses to persistent viruses. Science 272, 74–79 (1996)

    Article  Google Scholar 

  50. Ottesen, J.T., Olufsen, M.S., Larsen, J.K.: Applied Mathematical Models in Human Physiology, vol. MM09. SIAM, Philadelphia (2004)

    Book  MATH  Google Scholar 

  51. Perelson, A.S., Nelson, P.W.: Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41, 3–44 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  52. Reid, J.G.: Structural identifiability in linear time-invariant systems. IEEE Trans. Automat. Contr. 22, 242–246 (1977)

    Article  MATH  Google Scholar 

  53. Sage, A.P., Melsa, J.L.: System Identification. Academic, New York (1971)

    MATH  Google Scholar 

  54. Seber, G.A.F., Wild, C.J.: Nonlinear Regression. Wiley, Chichester (2003)

    Google Scholar 

  55. Shao, J., Tu, D.: The Jackknife and Bootstrap. Springer, New York (1995)

    Book  MATH  Google Scholar 

  56. Thomaseth, K., Cobelli, C.: Generalized sensitivity functions in physiological system identification. Ann. Biomed. Eng. 27(5), 607–616 (1999)

    Article  Google Scholar 

  57. White, L.J., Evans, N.D., Lam, T.J.G.M., Schukken, Y.H., Medley, G.F., Godfrey, K.R., Chappell, M.J.: The structural identifiability and parameter estimation of a multispecies model for the transmission of mastitis in diary cows. Math. Biosci. 174, 77–90 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wodarz, D., Nowak, M.A.: Specific therapy regimes could lead to long-term immunological control of HIV. Proc. Natl. Acad. Sci. 96, 14,464–14,469 (1999)

    Google Scholar 

  59. Wu, H., Zhu, H., Miao, H., Perelson, A.S.: Parameter identifiability and estimation of HIV/AIDS dynamics models. Bull. Math. Biol. 70, 785–799 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  60. Xia, X., Moog, C.M.: Identifiability of nonlinear systems with application to HIV/AIDS models. IEEE Trans. Automat. Contr. 48, 330–336 (2003)

    Article  MathSciNet  Google Scholar 

  61. Yue, H., Brown, M., He, F., Jia, J., Kell, D.B.: Sensitivity analysis and robust experimental design of a signal transduction pathway system. Int. J. Chem. Kinet. 40, 730–741 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by Grant Number R01AI071915-07 from the National Institute of Allergy and Infectious Diseases and in part by the Air Force Office of Scientific Research under grant number FA9550-09-1-0226. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIAID, the NIH or the AFOSR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. T. Banks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Banks, H.T., CintrĂ³n-Arias, A., Kappel, F. (2013). Parameter Selection Methods in Inverse Problem Formulation. In: Batzel, J., Bachar, M., Kappel, F. (eds) Mathematical Modeling and Validation in Physiology. Lecture Notes in Mathematics(), vol 2064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32882-4_3

Download citation

Publish with us

Policies and ethics