Skip to main content

Mathematical Modeling of Physiological Systems

  • Chapter
  • First Online:
Mathematical Modeling and Validation in Physiology

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2064))

Abstract

Although mathematical modeling has a long and very rich tradition in physiology, the recent explosion of biological, biomedical, and clinical data from the cellular level all the way to the organismic level promises to require a renewed emphasis on computational physiology, to enable integration and analysis of vast amounts of life-science data. In this introductory chapter, we touch upon four modeling-related themes that are central to a computational approach to physiology, namely simulation, exploration of hypotheses, parameter estimation, and model-order reduction. In illustrating these themes, we will make reference to the work of others contained in this volume, but will also give examples from our own work on cardiovascular modeling at the systems-physiology level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antoulas, A.: Approximation of Large-Scale Dynamical Systems. Advances in Design and Control. SIAM, Philadelphia, PA (2005)

    Book  MATH  Google Scholar 

  2. Bard, Y.: Nonlinear Parameter Estimation. Academic, New York (1974)

    MATH  Google Scholar 

  3. Bassingthwaighte, J.: Strategies for the physiome project. Ann. Biomed. Eng. 28, 1043–1058 (2000)

    Article  Google Scholar 

  4. Boyers, D., Cuthbertson, J., Luetscher, J.: Simulation of the human cardiovascular system: A model with normal response to change in posture, blood loss, transfusion, and autonomic blockade. Simulation 18, 197–205 (1972)

    Article  Google Scholar 

  5. Brunberg, A., Heinke, S., Spillner, J., Autschbach, R., Abel, D., Leonhardt, S.: Modeling and simulation of the cardiovascular system: A review of applications, methods, and potentials. Biomed. Tech. (Berl.) 54(5), 233–244 (2009)

    Google Scholar 

  6. Burth, M., Verghese, G., Vélez-Reyes, M.: Subset selection for improved parameter estimation in on-line identification of a synchronous generator. IEEE Trans. Power Syst. 14(1), 218–225 (1999)

    Article  Google Scholar 

  7. Consensus Committee of the American Autonomic Society and the American Academy of Neurology: Consensus statement on the definition of orthostatic hypotension, pure autonomic failure and multiple system atrophy. Clin. Auton. Res. 6, 125–126 (1996)

    Google Scholar 

  8. Crampin, E., Halstead, M., Hunter, P., Nielsen, P., Noble, D., Smith, N., Tawhai, M.: Computational physiology and the physiome project. Exp. Physiol. 89(1), 1–26 (2004)

    Article  Google Scholar 

  9. Croston, R., Fitzjerrell, D.: Cardiovascular model for the simulation of exercise, lower body negative pressure, and tilt table experiments. Proceedings of the Fifth Annual Pittsburgh Conference on Modeling and Simulation, pp. 471–476 (1974)

    Google Scholar 

  10. Croston, R., Rummel, J., Kay, F.: Computer model of cardiovascular control system response to exercise. J. Dyn. Syst. Meas. Control 95, 301–307 (1973)

    Article  Google Scholar 

  11. Dickinson, C.: A digital computer model of the effects of gravitational stress upon the heart and venous system. Med. Biol. Eng. 7, 267–275 (1969)

    Article  Google Scholar 

  12. Frank, O.: Die Grundform des arteriellen Pulses. Erste Abhandlung. Mathematische Analyse. Z. Biol. 37, 483–526 (1899)

    Google Scholar 

  13. Golub, G., Klema, V., Stewart, G.: Rank degeneracy and least squares problems. Technical Report TR-456, Department of Computer Science, University of Maryland, College Park, MD (1976)

    Google Scholar 

  14. Golub, G., van Loan, C.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore, MD (1996)

    MATH  Google Scholar 

  15. Green, J., Miller, N.: A model describing the response of the circulatory sytem to acceleration stress. Ann. Biomed. Eng. 1(4), 455–467 (1973)

    Article  Google Scholar 

  16. Guyton, A., Coleman, T.: Quantitative analysis of the pathophysiology of hypertension. Circ. Res. 24(Suppl. I), I1–I19 (1969)

    Google Scholar 

  17. Heldt, T.: Computational models of cardiovascular response to orthostatic stress. Doctoral dissertation, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA (2004). Http://dspace.mit.edu/handle/1721.1/28761

  18. Heldt, T., Mark, R.: Scaling cardiovascular parameters for population simulations. Comput. Cardiol. 31, 133–136 (2004). Available at http://www.cinc.org/archives/2004/133.pdf

    Google Scholar 

  19. Heldt, T., Mark, R.: Understanding post-spaceflight orthostatic intolerance – A simulation study. Comput. Cardiol. 32, 631–634 (2005). Available at http://www.cinc.org/archives/2005/0631.pdf

    Google Scholar 

  20. Heldt, T., Mukkamala, R., Moody, G., Mark, R.: CVSim: An open-source cardiovascular simulator for teaching and research. Open Pacing Electrophysiol. Ther. J. 3, 45–54 (2010)

    Google Scholar 

  21. Heldt, T., Oefinger, M., Hoshiyama, M., Mark, R.: Circulatory response to passive and active changes in posture. Comput. Cardiol. 29, 263–266 (2003). Available at http://www.cinc.org/archives/2003/263.pdf

  22. Heldt, T., Shim, E., Kamm, R., Mark, R.: Computational modeling of cardiovascular response to orthostatic stress. J. Appl. Physiol. 92(3), 1239–1254 (2002)

    Google Scholar 

  23. Heldt, T., Verghese, G., Long, W., Szolovits, P., Mark, R.: Integrating data, models, and reasoning in critical care. In: Proceedings of the 28th IEEE EMBC International Conference, pp. 350–353. IEEE Engineering in Medicine and Biology Society (2006)

    Google Scholar 

  24. van Heusden, K., Gisolf, J., Stok, W., Dijkstra, S., Karemaker, J.: Mathematical modeling of gravitational effects on the circulation: Importance of the time course of venous pooling and blood volume changes in the lungs. Am. J. Physiol. 291(5), H2152–H2165 (2006)

    Google Scholar 

  25. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  26. Hunter, P., Borg, T.: Integration from proteins: The physiome project. Nat. Rev. Mol. Cell Biol. 4, 237–243 (2003)

    Article  Google Scholar 

  27. Jaron, D., Moore, T., Bai, J.: Cardiovascular response to acceleration stress: A computer simulation. Proc. IEEE 76(6), 700–707 (1988)

    Article  Google Scholar 

  28. Jaron, D., Moore, T., Chu, C.L.: A cardiovascular model for studying impairment of cerebral function during + Gz stress. Aviat. Space Environ. Med. 55(1), 24–31 (1984)

    Google Scholar 

  29. Leonard, J., Leach, C., Rummel, J.: Computer simulations of postural change, water immersion, and bedrest: An integrative approach for understanding the spaceflight response. Physiologist 22(6), S31–S32 (1979)

    Google Scholar 

  30. Meck, J., Waters, W., Ziegler, M., deBlock, H., Mills, P., Robertson, D., Huang, P.: Mechanisms of post-spaceflight orthostatic hypotension: α1-adrenergic receptor responses before flight and central autonomic dysregulation post-flight. Am. J. Physiol. 286(4), H1486–H1495 (2004)

    Google Scholar 

  31. Melchior, F., Srinivasan, R., Clère, J.: Mathematical modeling of the human response to LBNP. Physiologist 35(1 Suppl.), S204–S205 (1992)

    Google Scholar 

  32. Melchior, F., Srinivasan, R., Thullier, P., Clère, J.: Simulation of cardiovascular response to lower body negative pressure from 0 to − 40 mmHg. J. Appl. Physiol. 77(2), 630–640 (1994)

    Google Scholar 

  33. Noble, D.: The surprising heart: A review of recent progress in cardiac electrophysiology. J. Physiol. 353, 1–50 (1984)

    Google Scholar 

  34. Olufsen, M., Ottesen, J., Tran, H., Ellwein, L., Lipsitz, L., Novak, V.: Blood pressure and blood flow variation during postural change from sitting to standing: Model development and validation. J. Appl. Physiol. 99(4), 1523–1537 (2005)

    Article  Google Scholar 

  35. Peterson, K., Ozawa, E., Pantalos, G., Sharp, M.: Numerical simulation of the influence of gravity and posture on cardiac performance. Ann. Biomed. Eng. 30(2), 247–259 (2002)

    Article  Google Scholar 

  36. Platts, S., Ziegler, M., Waters, W., Mitchell, B., Meck, J.: Midodrine prescribed to improve recurrent post-spaceflight orthostatic hypotension. Aviat. Space Environ. Med. 75(6), 554–556 (2004)

    Google Scholar 

  37. Ramsdell, C., Mullen, T., G.H., S., Rostoft, S., Sheynberg, N., Aljuri, N., Maa M. amd Mukkamala, R., Sherman, D., Toska, K., Yelle, J., Bloomfield, D., Williams, G., Cohen, R.: Midodrine prevents orthostatic intolerance associated with simulated microgravity. J. Appl. Physiol. 90(6), 2245–2248 (2001)

    Google Scholar 

  38. Simanonok, K., Srinivasan R.S. Myrick, E., Blomkalns, A., Charles, J.: A comprehensive guyton model analysis of physiologic responses to preadapting the blood volume as a countermeasure to fluid shifts. J. Clin. Pharmacol. 34(5), 440–453 (1994)

    Google Scholar 

  39. Simanonok, K., Srinivasan, R., Charles, J.: A computer simulation study of preadaptation of the circulation by removal of different blood volumes to counteract fluid shifts. Physiologist 35(1 Suppl.), S111–S112 (1992)

    Google Scholar 

  40. Smith, J., Hughes, C., Ptacin, M., Barney, J., Tristani, F., Ebert, T.J.: The effect of age on hemodynamic response to graded postural stress in normal men. J. Gerontol. 42(4), 406–411 (1987)

    Article  Google Scholar 

  41. Snyder, M., Rideout, V.: Computer simulation studies of the venous circulation. IEEE Trans. Biomed. Eng. BME-16(4), 325–334 (1969)

    Article  Google Scholar 

  42. Srinivasan, R., Simanonok, K., Charles, J.: Computer simulation analysis of the effects of countermeasures for reentry orthostatic intolerance. Physiologist 35(1 Suppl.), S165–S168 (1992)

    Google Scholar 

  43. Sud, V., Srinivasan, R., Charles, J., Bungo, M.: Effects of lower body negative pressure on blood flow with applications to the human cardiovascular system. Med. Biol. Eng. Comput. 31(6), 569–575 (1993)

    Article  Google Scholar 

  44. Summers, R., Martin, D., Meck, J., Coleman, T.: Computer systems analysis of spaceflight induced changes in left ventricular mass. Comput. Biol. Med. 37(3), 358–363 (2007)

    Article  Google Scholar 

  45. Vélez-Reyes, M.: Decomposed algorithms for parameter estimation. Doctoral dissertation, Massachusetts Institute of Technology, Cambridge, MA (1992)

    Google Scholar 

  46. Vogel, C.: Computational Methods for Inverse Problems. Frontiers in Applied Mathematics. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  47. Waters, W., Ziegler, M., Meck, J.: Postspaceflight orthostatic hypotension occurs mostly in women and is predicted by low vascular resistance. J. Appl. Physiol. 2(92), 596–594 (2002)

    Google Scholar 

  48. White, R., Blomqvist, C.: Central venous pressure and cardiac function during spaceflight. J. Appl. Physiol. 85(2), 738–746 (1998)

    Google Scholar 

  49. White, R., Fitzjerrell, D., Croston, R.: Cardiovascular modelling: Simulating the human response to exercise, lower body negative pressure, zero gravity and clinical conditions. In: Advances in Cardiovascular Physics, vol. 5 (Part 1), pp. 195–229. Karger, Basel (1983)

    Google Scholar 

  50. White, R., Fitzjerrell, D., Croston, R.: Fundamentals of lumped compartmental modelling of the cardiovascular system. In: Advances in Cardiovascular Physics, vol. 5 (Part 1), pp. 162–184. Karger, Basel (1983)

    Google Scholar 

  51. White, R., Leonard, J., Srinivasan, R., Charles, J.: Mathematical modeling of acute and chronic cardiovascular changes during extended duration orbiter (EDO) flights. Acta Astronaut. 23, 41–51 (1991)

    Article  Google Scholar 

  52. Zamanian, A.: Modeling and simulating the human cardiovascular response to acceleration. SM thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA (2007)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the United States National Aeronautics and Space Administration through the Cooperative Agreement NCC-52 with the National Space Biomedical Research Institute, and through grant R01 001659 from the National Institute of Biomedical Imaging and Bioengineering of the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Heldt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heldt, T., Verghese, G.C., Mark, R.G. (2013). Mathematical Modeling of Physiological Systems. In: Batzel, J., Bachar, M., Kappel, F. (eds) Mathematical Modeling and Validation in Physiology. Lecture Notes in Mathematics(), vol 2064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32882-4_2

Download citation

Publish with us

Policies and ethics