Skip to main content

Parameter Estimation of a Model for Baroreflex Control of Unstressed Volume

  • Chapter
  • First Online:
Mathematical Modeling and Validation in Physiology

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2064))

Abstract

The baroreflex involves a number of control pathways. In this chapter we consider in greater detail the role of the control of unstressed volume mobilization. We also consider an alternative approach for choosing parameters most likely to be estimable and we apply this method to a model incorporating the control of unstressed volume and compare to data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batzel, J.J., Fürtinger, S., Bachar, M., Fink, M., Kappel, F.: Sensitivity identifiability of a baroreflex control system model. Tech. Rep. IMA03-09, Institute for Mathematics and Scientific Computing, University of Graz (2009 (journal submission))

    Google Scholar 

  2. Cavalcanti, S., Cavani, S., Ciandrini, A., Avanzolini, G.: Mathematical modeling of arterial pressure response to hemodialysis-induced hypovolemia. Comput. Biol. Med. 36, 128–144 (2006)

    Article  Google Scholar 

  3. Cobelli, C., Carson, E.R., Finkelstein, L., Leaning, M.S.: Validation of simple and complex models in physiology and medicine. Am. J. Physiol. Regul. Integr. Comp. Physiol. 246(2) R259–R266 (1984)

    Google Scholar 

  4. Cobelli, C., DiStefano 3rd, J.J.: Parameter and structural identifiability concepts and ambiguities: A critical review and analysis. Am. J. Physiol. 239(1), R7–R24 (1980)

    Google Scholar 

  5. Fink, M., Batzel, J.J., Kappel, F.: An optimal control approach to modeling the cardiovascular-respiratory system: An application to orthostatic stress. Cardiovasc. Eng. 4(1), 27–38 (2004)

    Article  Google Scholar 

  6. Fink, M., Batzel, J.J., Kappel, F.: Modeling the human cardiovascular-respiratory control response to blood volume loss due to hemorrhage. In: Commault, C., Marchand, N. (eds.) Positive Systems: Lecture Notes in Control and Information Sciences, vol. 341, pp. 145–152. Springer, Berlin Heidelberg (2006)

    Google Scholar 

  7. Fink, M., Batzel, J.J., Tran, H.: A respiratory system model: parameter estimation and sensitivity analysis. Cardiovasc. Eng. 8(2), 120–134 (2008)

    Article  Google Scholar 

  8. Furlan, R., Porta, A., Costa, F., Tank, J., Baker, L., Schiavi, R., Robertson, D., Malliani, A., Mosqueda-Garcia, R.: Oscillatory patterns in sympathetic neural discharge and cardiovascular variables during orthostatic stimulus. Circulation 101(8), 886–892 (2000)

    Article  Google Scholar 

  9. Furlan, R., Jacob, G., Palazzolo, L., Rimoldi, A., Diedrich, A., Harris, P.A., Porta, A., Malliani, A., Mosqueda-Garcia, R., Robertson, D.: Sequential modulation of cardiac autonomic control induced by cardiopulmonary and arterial baroreflex mechanisms. Circulation 104(24), 2932–2937 (2001)

    Article  Google Scholar 

  10. Goswami, N., Loeppky, J.A., Hinghofer-Szalkay, H.: LBNP: past protocols and technical considerations for experimental design. Aviat. Space Environ. Med. 79(5), 459–471 (2008)

    Article  Google Scholar 

  11. Janssens, U., Graf, J.: Volume status and central venous pressure. Anaesthesist 58(5), 513–519 (2009)

    Article  Google Scholar 

  12. Kappel, F., Fink, M., Batzel, J.J.: Aspects of control of the cardiovascular-respiratory system during orthostatic stress induced by lower body negative pressure. Math. Biosci. 206(2), 273–308 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mosqueda-Garcia, R., Furlan, R., Fernandez-Violante, R., Desai, T., Snell, M., Jarai, Z., Ananthram, V., Robertson, R.M., Robertson, D.: Sympathetic and baroreceptor reflex function in neurally mediated syncope evoked by tilt. J. Clin. Invest. 99(11), 2736–2744 (1997)

    Article  Google Scholar 

  14. Olufsen, M.S., Ottesen, J.T., Tran, H.T.: Modeling cerebral blood flow control during posture change from sitting to standing. Cardiovasc. Eng. 4(1), 47–58 (2004)

    Article  Google Scholar 

  15. Olufsen, M.S., Ottesen, J.T., Tran, H.T., Ellwein, L.M., Lipsitz, L.A., Novak, V.: Blood pressure and blood flow variation during postural change from sitting to standing: Model development and validation. J. Appl. Physiol. 99(4), 1523–1537 (2005)

    Article  Google Scholar 

  16. Pang, C.C.: Autonomic control of the venous system in health and disease: effects of drugs. Pharmacol. Ther. 90(2-3), 179–230 (2001)

    Article  Google Scholar 

  17. Reid, J.G.: Structural identifiability in linear time-invariant systems. IEEE Trans. Automat. Contr. 22, 242–246 (1977)

    Article  MATH  Google Scholar 

  18. Risk, M.R., Lirofonis, V., Armentano, R.L., Freeman, R.: A biphasic model of limb venous compliance: a comparison with linear and exponential models. J. Appl. Physiol. 95, 1207–1215 (2003)

    Google Scholar 

  19. Thomaseth, K.: Multidisciplinary modelling of biomedical systems. Comput. Meth. Programs Biomed. 71(3), 189–201 (2003)

    Article  Google Scholar 

  20. Thomaseth, K., Cobelli, C.: Generalized sensitivity functions in physiological system identification. Ann. Biomed. Eng. 27(5), 607–616 (1999)

    Article  Google Scholar 

  21. Thomaseth, K., Cobelli, C.: Analysis of information content of pharmakokinetic data using generalized sensitivity functions. In: Proceedings of the 22nd Annual EMBS International Conference of the IEEE, vol. 1, pp. 435–437 (2000)

    Google Scholar 

  22. Ursino, M., Antonucci, M., Belardinelli, E.: Role of active changes in venous capacity by the carotid baroreflex: analysis with a mathematical model. Am. J. Physiol. 267, H2531–H2546 (1994)

    Google Scholar 

Download references

Acknowledgements

This research was partially funded by FWF (Austria) under project P18778-N13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Thomaseth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thomaseth, K., Batzel, J.J., Bachar, M., Furlan, R. (2013). Parameter Estimation of a Model for Baroreflex Control of Unstressed Volume. In: Batzel, J., Bachar, M., Kappel, F. (eds) Mathematical Modeling and Validation in Physiology. Lecture Notes in Mathematics(), vol 2064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32882-4_11

Download citation

Publish with us

Policies and ethics