Skip to main content

Merging Mathematical and Physiological Knowledge: Dimensions and Challenges

  • Chapter
  • First Online:
Mathematical Modeling and Validation in Physiology

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2064))

Abstract

This chapter introduces the main theoretical and practical topics which arise in the mathematical modeling of the human cardiovascular–respiratory system. These topics and ideas, developed in detail in the text, also represent a template for considering interdisciplinary research involving mathematical and life science disciplines in general. The chapter presents a multi-sided view of the modeling process which synthesizes the mathematical and life science viewpoints needed for developing and validating models of physiological systems. Particular emphasis is placed on the problem of coordinating model design and experimental design and methods for analyzing the model identification problem in the light of restricted data. In particular a variety of approaches based on information derived from parameter sensitivity are examined. The themes presented seek to provide a coordinated view of modeling that can aid in considering the current problem of patient-specific model adaptation in the clinical setting where data is in particular typically limited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Aelius Galenus, born 129 or 131 ad in Pergamon, died 199, 201 or 216 in Rome(?).

  2. 2.

    For simplicity of presentation we assume that the sampling times are the same for all measurable system outputs which in general is not case.

  3. 3.

    In abuse of language we frequently find the statement that the parameter θ i is sensitive in a neighborhood of θ0.

References

  1. Banks, H.T., Dediu, S., Ernstberger, S.L., Kappel, F.: A new approach to optimal design problems. J. Inverse Ill Posed Probl. 18, 25–83 (2010)

    MathSciNet  Google Scholar 

  2. Banks, H.T., Holm, K., Kappel, F.: Comparison of optimal design methods in inverse problems. Inverse Probl. 27(7), 075002(31pp.) (2011). doi: 10.1088/0266-5611/27/7/75002

    Google Scholar 

  3. Bassingthwaighte, J.B., Chizeck, H.J., Atlas, L.E., Qian, H.: Multiscale modeling of cardiac cellular energetics. Ann. N Y Acad. Sci. 1047, 395–424 (2005)

    Article  Google Scholar 

  4. Batzel, J.J., Kappel, F., Schneditz, D., Tran, H.T.: Cardiovascular and Respiratory Systems: Modeling, Analysis and Control. Frontiers in Applied Mathematics, vol. FR34. SIAM, Philadelphia (2006)

    Google Scholar 

  5. Catchpole, E.A., Morgan, B.J.T.: Detecting parameter redundancy. Biometrika 84, 187–196 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Catchpole, E.A., Morgan, B.J.T., Freeman, S.N.: Estimation in parameter redundant models. Biometrika 85, 462–468 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chu, Y., Hahn, J.: Parameter set selection for estimation of nonlinear dynamic systems. J. AIChE 53(11), 2858–2870 (2007)

    Article  Google Scholar 

  8. Cobelli, C., Carson, E.R., Finkelstein, L., Leaning, M.S.: Validation of simple and complex models in physiology and medicine. Am. J. Physiol. Regul. Integr. Comp. Physiol. 246(2), R259–R266 (1984)

    Google Scholar 

  9. Cobelli, C., DiStefano 3rd, J.J.: Parameter and structural identifiability concepts and ambiguities: A critical review and analysis. Am. J. Physiol. 239(1), R7–24 (1980)

    Google Scholar 

  10. Fedorov, V.V., Hackel, P.: Model-Oriented Design of Experiments. Springer, New York (1997)

    Book  MATH  Google Scholar 

  11. Guyton, A.C., Coleman, T.G., Granger, H.J.: Circulation: Overall regulation. Annu. Rev. Physiol. 34, 13–46 (1972)

    Google Scholar 

  12. Harveius, G.: Exercitatio anatomica de motu cordis et sanguinis in animalibus. G. Fitzerus, ed. (1628). Facsimile in: Begründer der experimentellen Physiologie, Blasius, W., Boylan, J., Kramer, K. (eds.) J.F. Lehmanns Verlag, München (1971)

    Google Scholar 

  13. Hester, R.L., Iliescu, R., Summers, R.L., Coleman, T.G.: Systems biology and integrative physiological modeling. J. Physiol. 589, 1053–1060 (2011)

    Article  Google Scholar 

  14. Morgan, B.J.T.: Applied Stochastic Modelling. Arnold Texts in Statistics. Arnold, London (2000)

    MATH  Google Scholar 

  15. Morris, M.: Factorial samplig plans for preliminary computational experiments. Technometrics 33(2), 161–174 (1991)

    Article  Google Scholar 

  16. Munir, M.: Generalized Sensitivity Functions in Physiological Modelling. PhD-Thesis, University of Graz (April 2010)

    Google Scholar 

  17. Pukelsheim, F.: Optimal Design of Experiments. Wiley, New York (1993)

    MATH  Google Scholar 

  18. Rothe, C.F., Gersting, J.M.: Cardiovascular interactions: An interactive tutorial and mathematical model. Adv. Physiol. Educ. 26(2), 98–109 (2002)

    Google Scholar 

  19. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global Sensitivity Analysis: The Primer. Wiley-Interscience, New York (2008)

    MATH  Google Scholar 

  20. Seber, G.A.F., Wild, C.J.: Nonlinear Regression. Wiley, Chichester (2003)

    Google Scholar 

  21. Thomaseth, K., Cobelli, C.: Generalized sensitivity functions in physiological system identification. Ann. Biomed. Eng. 27(5), 607–616 (1999)

    Article  Google Scholar 

  22. Ucinski, D., Atkinson, A.C.: Experimental design for time-dependent models with correlated observations. Studies in Nonlinear Dynamics and Econometrics 8(2), Article 13: The Berkeley Electronic Press, Berkeley, CA (2004)

    Google Scholar 

  23. Wesseling, K.H., Jansen, J.R.C., Settels, J.J., Schreuder, J.J: Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J. Appl. Physiol. 74, 2566–2573 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry J. Batzel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Batzel, J.J., Bachar, M., Karemaker, J.M., Kappel, F. (2013). Merging Mathematical and Physiological Knowledge: Dimensions and Challenges. In: Batzel, J., Bachar, M., Kappel, F. (eds) Mathematical Modeling and Validation in Physiology. Lecture Notes in Mathematics(), vol 2064. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32882-4_1

Download citation

Publish with us

Policies and ethics