Skip to main content

Anaesthetic Management

  • Chapter
  • First Online:
Principles of Miniaturized ExtraCorporeal Circulation

Abstract

Cardiopulmonary bypass (CPB) technology is relatively old. Since the first cardiac surgical operations in the early 1950s, improvements in oxygenator design, in coagulation monitoring and greater understanding of blood damage by flow rates and shear stresses have contributed to the relatively safe modern circuit. Despite all this refinement, CPB is still associated with systemic inflammatory response syndrome (SIRS), which is translated into myocardial, renal, pulmonary and neurologic dysfunction. However, although these effects are often subclinical, they can contribute to adverse postoperative outcome. Over the past 10 years, miniaturised extracorporeal circulation (MECC) has been developed targeting in reducing the side effects of conventional extracorporeal circulation (CECC). MECC has adopted all modern technology and translated the results from research in its structures. The net outcome from the use of these systems is reduced perioperative morbidity and reduced procedural mortality as has been recently demonstrated in our meta-analysis [1]. Anaesthetic techniques have always evolved with changes in surgical practice. Anaesthetic considerations regarding use of MECC in cardiac surgery are discussed in this chapter with the rational of enhanced recovery and implementation of fast track strategies based to the qualities of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anastasiadis K, Antonitsis P, Haidich AB, Argiriadou H, Deliopoulos A, Papakonstantinou C (2012) Use of minimal extracorporeal circulation improves outcome after heart surgery; a systematic review and meta-analysis of randomized controlled trials. Int J Cardiol [Epub ahead of print]

    Google Scholar 

  2. Hall RI (2002) Cardiopulmonary bypass and the systemic inflammatory response: effects on drug action. J Cardiothorac Vasc Anesth 16:83–98

    Article  PubMed  Google Scholar 

  3. Hynynen M, Takkunen O, Salmenperh M, Haataja H, Heinonen I (1986) Continuous infusion of fentanyl or alfentanil for coronary artery surgery. Plasma opiate concentrations, haemodynamics and postoperative course. Br J Anaesth 58:1252–1259

    Article  PubMed  CAS  Google Scholar 

  4. Kussman BD, Zurakowski D, Sullivan L, McGowan FX, Davis PJ, Laussen PC (2005) Evaluation of plasma fentanyl concentrations in infants during cardiopulmonary bypass with low-volume circuits. J Cardiothorac Vasc Anesth 19:316–321

    Article  PubMed  CAS  Google Scholar 

  5. Koren G, Crean P, Klein J, Goresky G, Villamater J, McLeod SM (1984) Sequestration of fentanyl by the cardiopulmonary bypass (CPBP). Eur J Clin Pharmacol 27:51–56

    PubMed  CAS  Google Scholar 

  6. Hudson RJ, Thomson IR, Jassal R, Peterson DJ, Brown AD, Freedman JI (2003) Cardiopulmonary bypass has minimal effects on the pharmacokinetics of fentanyl in adults. Anesthesiology 99:847–854

    Article  PubMed  CAS  Google Scholar 

  7. Wietasch JK, Scholz M, Zinserling J, Kiefer N, Frenkel C, Knüfermann P, Brauer U, Hoeft A (2006) The performance of a target-controlled infusion of propofol in combination with remifentanil: a clinical investigation with two propofol formulations. Anesth Analg 102:430–437

    Article  PubMed  CAS  Google Scholar 

  8. Dixon J, Roberts FL, Tackley RM, Lewis GT, Connell H, Prys-Roberts C (1990) Study of the possible interaction between fentanyl and propofol using a computer controlled infusion of propofol. Br J Anaesth 64:142–147

    Article  PubMed  CAS  Google Scholar 

  9. Pavlin DJ, Coda B, Shen DD, Tschanz J, Nguyen Q, Schaffer R, Donaldson G, Jacobson RC, Chapman CR (1996) Effects of combining propofol and alfentanil on ventilation, analgesia, sedation, and emesis in human volunteers. Anesthesiology 84:23–37

    Article  PubMed  CAS  Google Scholar 

  10. Bauer M, Wilhelm W, Kraemer T, Kreuer S, Brandt A, Adams HA, Hoff G, Larsen R (2004) Impact of bispectral index monitoring on stress response and propofol consumption in patients undergoing coronary artery bypass surgery. Anesthesiology 101:1096–1104

    Article  PubMed  CAS  Google Scholar 

  11. Schwilden H (1981) A general method for calculating the dosage scheme in linear pharmacokinetics. Eur J Clin Pharmacol 20:379–386

    Article  PubMed  CAS  Google Scholar 

  12. Schnider TW, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, Youngs EJ (1998) The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology 88:1170–1182

    Article  PubMed  CAS  Google Scholar 

  13. Minto CF, Schnider TW, Shafer SL (1997) Pharmacokinetics and pharmacodynamics of remifentanil. II. Model application. Anesthesiology 86:24–33

    Article  PubMed  CAS  Google Scholar 

  14. Steinlechner B, Dworschak M, Birkenberg B, Lang T, Schiferer A, Moritz A, Mora B, Rajek A (2007) Low-dose remifentanil to suppress haemodynamic responses to noxious stimuli in cardiac surgery: a dose-finding study. Br J Anaesth 98:598–603

    Article  PubMed  CAS  Google Scholar 

  15. Egan TD (1995) Remifentanil pharmacokinetics and pharmacodynamics. A preliminary appraisal. Clin Pharmacokinet 29:80–94

    Article  PubMed  CAS  Google Scholar 

  16. Patel SS, Spencer CM (1996) Remifentanil. Drugs 52:417–427

    Article  PubMed  CAS  Google Scholar 

  17. Olivier P, Sirieix D, Dassier P, D’Attellis N, Baron JF (2000) Continuous infusion of remifentanil and target-controlled infusion of propofol for patients undergoing cardiac surgery: a new approach for scheduled early extubation. J Cardiothorac Vasc Anesth 14:29–35

    Article  PubMed  CAS  Google Scholar 

  18. Steinlechner B, Koinig H, Grubhofer G, Ponschab M, Eislmeir S, Dworschak M, Rajek A (2005) Postoperative analgesia with remifentanil in patients undergoing cardiac surgery. Anesth Analg 100:1230–1235

    Article  PubMed  CAS  Google Scholar 

  19. Richebé P, Pouquet O, Jelacic S, Mehta S, Calderon J, Picard W, Rivat C, Cahana A, Janvier G (2011) Target-controlled dosing of remifentanil during cardiac surgery reduces postoperative hyperalgesia. J Cardiothorac Vasc Anesth 25:917–925

    Article  PubMed  Google Scholar 

  20. Schlaich N, Mertzlufft F, Soltesz S, Fuchs-Buder T (2000) Remifentanil and propofol without muscle relaxants or with different doses of rocuronium for tracheal intubation in outpatient anaesthesia. Acta Anaesthesiol Scand 44:720–726

    Article  PubMed  CAS  Google Scholar 

  21. Hudson RJ, Ian R, Thomson IR, Henderson BT, Singh K, Harding G, Peterson DJ (2002) Cardiothoracic anesthesia, respiration and airway validation of fentanyl pharmacokinetics in patients undergoing coronary artery bypass grafting. Can J Anesth 49:388–392

    Article  PubMed  Google Scholar 

  22. Westaby S, Pillai R, Parry A, O’ Regan D, Giannopoulos N, Grebenik K, Sinclair M, Fisher A (1993) Does modern cardiac surgery require conventional intensive care? Eur J Cardiothorac Surg 7:313–318

    Article  PubMed  CAS  Google Scholar 

  23. Cheng DCH, Karski J, Peniston C, Asokumar B, Raveendran G, Carroll J, Nierenberg H, Roger S, Mickle D, Tong J, Zelovitsky J, David T, Sandler A (1996) Morbidity outcome in early versus conventional tracheal extubation after coronary artery bypass grafting: a prospective randomized controlled trial. J Thorac Cardiovasc Surg 112:755–764

    Article  PubMed  CAS  Google Scholar 

  24. Philipp A, Wiesenack C, Behr R, Schmid FX, Birnbaum DE (2002) High risk of intraoperative awareness during cardiopulmonary bypass with isoflurane administration via diffusion membrane oxygenators. Perfusion 17:175–178

    Article  PubMed  Google Scholar 

  25. Wiesenack C, Wiesner G, Keyl C, Gruber M, Philipp A, Ritzka M, Prasser C, Taeger K (2002) In vivo uptake and elimination of isoflurane by different membrane oxygenators during cardiopulmonary bypass. Anesthesiology 97:133–138

    Article  PubMed  CAS  Google Scholar 

  26. De Hert G, Van Der Linden PJ, Cromheecke S, Meeus R, Nelis A, Van Reeth V, Broecke PW, De Blier IG, Stockman BA, Rodrigus IE (2004) Cardioprotective properties of sevoflurane in patients undergoing coronary surgery with cardiopulmonary bypass are related to the modalities of its administration. Anesthesiology 101:299–310

    Article  PubMed  Google Scholar 

  27. De Hert G, Van Der Linden PJ, Cromheecke S, Meeus R, ten Broecke PW, De Blier IG, Stockman BA, Rodrigus IE (2004) Choice of primary anesthetic regimen can influence intensive care unit length of stay after coronary surgery with cardiopulmonary bypass. Anesthesiology 101:9–20

    Article  PubMed  Google Scholar 

  28. Julier K, da Silva R, Garcia C, estmann L, Frascarolo P, Zollinger A, Chassot PG, Schmid ER, Turina MI, von Segesser LK, Pasch T, Spahn DR, Zaugg M (2003) Preconditioning by sevoflurane decreases biochemical markers for myocardial and renal dysfunction in coronary artery bypass graft surgery: a double-blinded, placebo-controlled, multicenter study. Anesthesiology 98:1315–1327

    Article  PubMed  CAS  Google Scholar 

  29. De Hert SG, ten Broecke PW, Mertens E, Van Sommeren EW, De Blier IG, Stockman BA, Rodrigus IE (2002) Sevoflurane but not propofol preserves myocardial function in coronary surgery patients. Anesthesiology 97:42–49

    Article  PubMed  Google Scholar 

  30. De Hert SG, Cromheecke S, ten Broecke PW, Mertens E, De Blier IG, Stockman BA, Rodrigus IE, Van der Linden PJ (2003) Effects of propofol, desflurane, and sevoflurane on recovery of myocardial function after coronary surgery in elderly high-risk patients. Anesthesiology 99:314–323

    Article  PubMed  Google Scholar 

  31. Cromheecke S, Pepermans V, Hendrickx E, Lorsomradee S, Ten Broecke PW, Stockman BA, Rodrigus IE, De Hert SG (2006) Cardioprotective properties of sevoflurane in patients undergoing aortic valve replacement with cardiopulmonary bypass. Anesth Analg 103:289–296

    Article  PubMed  CAS  Google Scholar 

  32. Landoni G, Biondi-Zoccai GG, Zangrillo A, Bignami E, D’Avolio S, Marchetti C, Calabrò MG, Fochi O, Guarracino F, Tritapepe L, De Hert S, Torri G (2007) Desflurane and sevoflurane in cardiac surgery: a meta-analysis of randomized clinical trials. J Cardiothorac Vasc Anesth 21:502–511

    Article  PubMed  CAS  Google Scholar 

  33. De Hert S, Vlasselaers D, Barbe R, Ory JP, Dekegel D, Donnadonni R, Demeere JL, Mulier J, Wouters P (2009) A comparison of volatile and non volatile agents for cardioprotection during on-pump coronary surgery. Anaesthesia 64:953–960

    Article  PubMed  Google Scholar 

  34. Kanbak M, Saricaoglu F, Akinci SB, Oc B, Balci H, Celebioglu B, Aypar U (2007) The effects of isoflurane, sevoflurane, and desflurane anesthesia on neurocognitive outcome after cardiac surgery: a pilot study. Heart Surg Forum 10:E36–E41

    Article  PubMed  Google Scholar 

  35. Anastasiadis K, Argiriadou H, Kosmidis MH, Megari K, Antonitsis P, Thomaidou E, Aretouli E, Papakonstantinou C (2011) Neurocognitive outcome after coronary artery bypass surgery using minimal versus conventional extracorporeal circulation: a randomised controlled pilot study. Heart 97:1082–1088

    Article  PubMed  Google Scholar 

  36. Anastasiadis K, Antonitsis P, Argiriadou H, Khayat A, Papakonstantinou C, Westaby S (2011) Use of minimal extracorporeal circulation circuit for left ventricular assist device implantation. ASAIO J 57:547–549

    Article  PubMed  Google Scholar 

  37. Sakwa MP, Emery RW, Shannon FL, Altshuler JM, Mitchell D, Zwada D, Holter AR (2009) Coronary artery bypass grafting with a minimized cardiopulmonary bypass circuit: a prospective, randomized trial. J Thorac Cardiovasc Surg 137(2):481–485

    Article  PubMed  Google Scholar 

  38. Train JJA (1992) Comment: determination of protamine dose. Anaesthesia 47:636–637

    Article  PubMed  CAS  Google Scholar 

  39. DeLaria GA, Tyner JJ, Hayes CL, Armstrong BW (1994) Heparin-protamine mismatch. A controllable factor in bleeding after open heart surgery. Arch Surg 129:944–950

    Article  PubMed  CAS  Google Scholar 

  40. Lindblad B (1989) Protamine sulphate: a review of its effects: hypersensitivity and toxicity. Eur J Vasc Surg 3:195–201

    Article  PubMed  CAS  Google Scholar 

  41. Kirklin JK, Chenoweth DE, Naftel DC, Blackstone EH, Kirklin JW, Bitran DD, Curd JG, Reves JG, Samuelson PN (1986) Effects of protamine administration after cardiopulmonary bypass on complement, blood elements, and the hemodynamic state. Ann Thorac Surg 41:193–199

    Article  PubMed  CAS  Google Scholar 

  42. Lundquist H, Hedenstierna G, Strandberg A, Tokics L, Brismar B (1995) CT-assessment of dependent lung densities in man during general anaesthesia. Acta Radiol 36:626–632

    Article  PubMed  CAS  Google Scholar 

  43. Brismar B, Hedenstierna G, Lundquist H (1985) Pulmonary densities during anesthesia with muscular relaxation: a proposal of atelectasis. Anesthesiology 62:422–428

    Article  PubMed  CAS  Google Scholar 

  44. Lindberg P, Gunnarsson L, Tokics L, Secher E, Lundquist H, Brismar B, Hedenstierna G (1992) Atelectasis and lung function in the postoperative period. Acta Anaesthesiol Scand 36:546–553

    Article  PubMed  CAS  Google Scholar 

  45. Eichenberger AS, Proietti S, Wicky S, Frascarolo P, Suter M, Spahn DR, Magnusson L (2002) Morbid obesity and postoperative pulmonary atelectasis: an underestimated problem. Anesth Analg 95:1788–1792

    Article  PubMed  Google Scholar 

  46. van Boven WJ, Gerritsen WB, Zanen P, Grutters JC, van Dongen HP, Bernard A, Aarts LP (2005) Pneumoproteins as a lung-specific biomarker of alveolar permeability in conventional on-pump coronary artery bypass graft surgery vs mini-extracorporeal circuit: a pilot study. Chest 127:1190–1195

    Article  PubMed  Google Scholar 

  47. Tusman G, Böhm SH (2010) Prevention and reversal of lung collapse during the intra-operative period. Best Pract Res Clin Anaesthesiol 24:183–197

    Article  PubMed  Google Scholar 

  48. Dorsa AG, Rossi AI, Thierer J, Lupiañez B, Vrancic JM, Vaccarino GN, Piccinini F, Raich H, Solange V, Bonazzi SV, Benzadon M, Daniel O, Navia DO (2011) Immediate extubation after off-pump coronary artery bypass graft surgery in 1,196 consecutive patients: feasibility, safety and predictors of when not to attempt it. J Cardiothorac Vasc Anesth 25:431–436

    Article  PubMed  Google Scholar 

  49. Hall JE, Uhrich TD, Barney JA, Arain SR, Ebert TJ (2000) Sedative, amnestic, and analgesic properties of small-dose dexmedetomidine infusions. Anesth Analg 90:699–705

    Article  PubMed  CAS  Google Scholar 

  50. Arain SR, Ruehlow RM, Uhrich TD, Ebert TJ (2004) The efficacy of dexmedetomidine versus morphine for postoperative analgesia after major inpatient surgery. Anesth Analg 98:153–158

    Article  PubMed  CAS  Google Scholar 

  51. Khan ZP, Ferguson CN, Jones RM (1999) Alpha-2 and imidazoline receptor agonists. Their pharmacology and therapeutic role. Anaesthesia 54:146–165

    Article  PubMed  CAS  Google Scholar 

  52. Maldonado J, Wysong A, van der Starre P, Block T, Miller C, Reitz BA (2009) Dexmedetomidine and the reduction of postoperative delirium after cardiac surgery. Psychosomatics 50:206–217

    Article  PubMed  CAS  Google Scholar 

  53. Unlugenc H, Gunduz M, Guler T, Yagmur O, Isik G (2005) The effect of pre-anaesthetic administration of intravenous dexmedetomidine on postoperative pain in patients receiving patient-controlled morphine. Eur J Anaesthesiol 22:386–391

    Article  PubMed  CAS  Google Scholar 

  54. Venn RM, Karol MD, Grounds RM (2002) Pharmacokinetics of dexmedetomidine infusions for sedation of postoperative patients requiring intensive caret. Br J Anaesth 88:669–675

    Article  PubMed  CAS  Google Scholar 

  55. Bloor BC, Ward DS, Belleville JP, Maze M (1992) Effects of intravenous dexmedetomidine in humans. II. Hemodynamic changes. Anesthesiology 77:1134–1142

    Article  PubMed  CAS  Google Scholar 

  56. Aantaa R, Kanto J, Scheinin M, Kallio A, Scheinin H (1990) Dexmedetomidine, an alpha 2-adrenoceptor agonist, reduces anesthetic requirements for patients undergoing minor gynecologic surgery. Anesthesiology 73:230–235

    Article  PubMed  CAS  Google Scholar 

  57. Lin TF, Yeh YC, Lin FS, Wang YP, Lin CJ, Sun WZ, Fan SZ (2009) Effect of combining dexmedetomidine and morphine for intravenous patient-controlled analgesia. Br J Anaesth 102:117–122

    Article  PubMed  CAS  Google Scholar 

  58. Straka Z, Brucek P, Vanek T, Votava J, Widimsky P (2002) Routine immediate extubation for off-pump coronary artery bypass grafting without thoracic epidural analgesia. Ann Thorac Surg 74:1544–1547

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anastasiadis, K., Antonitsis, P., Argiriadou, H. (2013). Anaesthetic Management. In: Principles of Miniaturized ExtraCorporeal Circulation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32756-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32756-8_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32755-1

  • Online ISBN: 978-3-642-32756-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics