Skip to main content

Abstract

The search for a less aggressive and more biocompatible CPB circuit led to the development of miniaturised CPB, based on the idea of a closed oxygenator system which avoids contact of blood with air [1]. MECC integrates all the advances in CPB technology in one circuit specifically designed to minimise side effects from extracorporeal circulation. The essential components of a MECC circuit include (1) a blood pump, (2) a membrane oxygenator, (3) arterial and venous cannulae and (4) heparin-coated tubing to connect these devices. Blood–air interaction is avoided by eliminating the venous reservoir and cardiotomy suction. Thus, shed blood is completely separated from the systemic circulation [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiesenack C, Liebold A, Philipp A, Ritzka M, Koppenberg J, Birnbaum DE, Keyl C (2004) Four years’ experience with a miniaturized extracorporeal circulation system and its influence on clinical ­outcome. Artif Organs 28:1082–1088

    Article  PubMed  Google Scholar 

  2. Mueller XM, Jegger D, Augstburger M, Horisberger J, Godar G, von Segesser LK (2002) A new concept of integrated cardiopulmonary bypass circuit. Eur J Cardiothorac Surg 21:840–846

    Article  PubMed  Google Scholar 

  3. Anastasiadis K, Chalvatzoulis O, Antonitsis P, Deliopoulos A, Argiriadou H, Karapanagiotidis G, Kambouroglou D, Papakonstantinou C (2011) Use of minimized extracorporeal circulation system in non-coronary and valve cardiac surgical procedures – a case series. Artif Organs 35:960–963

    Article  PubMed  Google Scholar 

  4. De Somer FM, Van Nooten G (2008) Blood pumps in cardiopulmonary bypass. In: Gravlee GP, Davis RF, Stamers AH, Ungerleider RM (eds) Cardiopulmonary bypass principles and practice, 3rd edn. Lippincott Wiliams & Wilkins, Philadelphia

    Google Scholar 

  5. Kolff J, McClurken JB, Alpern JB (1990) Beware centrifugal pumps: not a one-way street, but a dangerous siphon! Ann Thorac Surg 50:512

    Article  PubMed  CAS  Google Scholar 

  6. Kolff J, Ankney RN, Wurzel D, Devineni R (1996) Centrifugal pump failures. J Extra Corpor Technol 28:118–122

    PubMed  CAS  Google Scholar 

  7. Pacheco DA, Ingram JM, Pacheco S (1992) A comparison of three centrifugal pumps’ ability to expel micro-air under conditions of cavitation or bolus air injection. Proc Am Acad Cardiovasc Perfusion 13:73–77

    Google Scholar 

  8. Zhang J, Gellman B, Koert A, Dasse KA, Gilbert RJ, Griffith BP, Wu ZJ (2006) Computational and experimental evaluation of the fluid dynamics and hemocompatibility of the CentriMag blood pump. Artif Organs 30:168–177

    Article  PubMed  Google Scholar 

  9. Takiura K, Masuzawa T, Endo S, Wakisaka Y, Tatsumi E, Taenaka Y, Takano H, Yamane T, Nishida M, Asztalos B, Konishi Y, Miyazoe Y, Ito K (1998) Development of design methods of a centrifugal pump with in vitro tests, flow visualization and computational fluid dynamics: results in hemolysis tests. Artif Organs 22:393–398

    Article  PubMed  CAS  Google Scholar 

  10. Tanaka M, Kawahito K, Adachi H, Isawa H, Ino T (2001) Platelet damage caused by the centrifugal pump: laser-light scattering analysis of aggregation patterns. Artif Organs 25:719–723

    Article  PubMed  CAS  Google Scholar 

  11. Nishinaka T, Nishida H, Endo M, Miyagishima M, Ohtsuka G, Koyanagi H (1996) Less blood damage in the impeller centrifugal pump: a comparative study with the roller pump in open heart surgery. Artif Organs 20:707–710

    Article  PubMed  CAS  Google Scholar 

  12. Morgan IS, Codispoti M, Sanger K, Mankad PS (1998) Superiority of centrifugal pump over roller pump in paediatric cardiac surgery: prospective randomised trial. Eur J Cardiothorac Surg 13:526–532

    Article  PubMed  CAS  Google Scholar 

  13. Ashraf SS, Tian Y, Cowan D, Shaikh R, Parsloe M, Martin P, Watterson KG (1997) Proinflammatory cytokine release during pediatric cardiopulmonary bypass: influence of centrifugal and roller pumps. J Cardiothorac Vasc Anesth 11:718–722

    Article  PubMed  CAS  Google Scholar 

  14. Baufreton C, Intrator L, Jansen PG, te Velthuis H, Le Besnerais P, Vonk A, Farcet JP, Wildevuur CR, Loisance DY (1999) Inflammatory response to cardiopulmonary bypass using roller or centrifugal pumps. Ann Thorac Surg 67:972–977

    Article  PubMed  CAS  Google Scholar 

  15. Göbel C, Arvand A, Rau G, Reul H, Meyns B, Flameng W, Eilers R, Marseille O (2002) A new rotary blood pump for versatile extracorporeal circulation: the DeltaStream. Perfusion 17:373–382

    Article  PubMed  Google Scholar 

  16. Agati S, Mignosa C, Ciccarello C, Dario S, Undar A (2005) Pulsatile ECMO in neonates and infants: first European clinical experience with a new device. ASAIO J 51:508–512

    Article  PubMed  Google Scholar 

  17. Haneya A, Philipp A, Diez C, Ried M, Puehler T, Camboni D, Zausig Y, Lehle K, Schmid C (2009) Comparison of two different minimized extracorporeal circulation systems: hematological effects after coronary surgery. ASAIO J 55:592–597

    Article  PubMed  Google Scholar 

  18. Stammers AH, Trowbridge CC (2008) Principles of oxygenator function: gas exchange, heat transfer, and operation. In: Gravlee GP, Davis RF, Stamers AH, Ungerleider RM (eds) Cardiopulmonary bypass principles and practice, 3rd edn. Lippincott Wiliams & Wilkins, Philadelphia

    Google Scholar 

  19. Dutton RC, Edmunds LH Jr (1974) Formation of platelet aggregate emboli in a prototype hollow-fiber membrane oxygenator. J Biomed Mater Res 8:163

    Article  PubMed  CAS  Google Scholar 

  20. Chilton V, Klein A (2009) Equipment and monitoring. In: Ghosh S, Falter F, Cook DJ (eds) Cardiopulmonary bypass. Cambridge University Press, Cambridge

    Google Scholar 

  21. Panday GF, Fischer S, Bauer A, Metz D, Schubel J, El Shouki N, Eberle T, Hausmann H (2009) Minimal extracorporeal circulation and off-pump compared to conventional cardiopulmonary bypass in coronary surgery. Interact Cardiovasc Thorac Surg 9:832–836

    Article  PubMed  Google Scholar 

  22. Fromes Y, Gaillard D, Ponzio O, Chauffert M, Gerhardt MF, Deleuze P, Bical OM (2002) Reduction of the inflammatory response following coronary bypass grafting with total minimal extracorporeal circulation. Eur J Cardiothorac Surg 22:527–533

    Article  PubMed  Google Scholar 

  23. Remadi JP, Rakotoarivello Z, Marticho P, Trojette F, Benamar A, Poulain H, Tribouilloy C (2004) Aortic valve replacement with the minimal extracorporeal circulation (Jostra MECC System) versus standard cardiopulmonary bypass: a randomized prospective trial. J Thorac Cardiovasc Surg 128:436–441

    Article  PubMed  CAS  Google Scholar 

  24. Gott VL, Whiffen JD, Datton RC (1963) Heparin surface bonding on colloidal graphite surface. Science 142:1297–1298

    Article  PubMed  CAS  Google Scholar 

  25. Levy M, Hartman AR (1996) Heparin-coated bypass circuits in cardiopulmonary bypass: improved biocompatibility or not. Int J Cardiol 53(Suppl):S81–S87

    Article  PubMed  Google Scholar 

  26. Wendel HP, Ziemer G (1999) Coating techniques to improve the hemocompatibility of artificial devices used for extracorporeal circulation. Eur J Cardiothorac Surg 16:342–350

    Article  PubMed  CAS  Google Scholar 

  27. Fujita M, Ishihara M, Ono K, Hattori H, Kurita A, Shimizu M, Mitsumaru A, Segawa D, Hinokiyama K, Kusama Y, Kikuchi M, Maehara T (2002) Adsorption of inflammatory cytokines using a heparin-coated extracorporeal circuit. Artif Organs 26:1020–1025

    Article  PubMed  CAS  Google Scholar 

  28. Koster A, Fischer T, Praus M, Haberzettl H, Kuebler WM, Hetzer R, Kuppe H (2002) Hemostatic activation and inflammatory response during cardiopulmonary bypass: impact of heparin management. Anesthesiology 97:837–841

    Article  PubMed  CAS  Google Scholar 

  29. Hsu LC (2001) Heparin-coated cardiopulmonary bypass circuits: current status. Perfusion 16:417–428

    Article  PubMed  CAS  Google Scholar 

  30. Videm V, Svennevig JL, Fosse E, Semb G, Osterud A, Mollnes TE (1992) Reduced complement activation with heparin-coated oxygenator and tubings in coronary bypass operations. J Thorac Cardiovasc Surg 103:806–813

    PubMed  CAS  Google Scholar 

  31. Gu YJ, van Oeveren W, Akkerman C, Boonstra PW, Huyzen RJ, Wildevuur CR (1993) Heparin-coated circuits reduce the inflammatory response to cardiopulmonary bypass. Ann Thorac Surg 55:917–922

    Article  PubMed  CAS  Google Scholar 

  32. Fosse E, Moen O, Johnson E, Semb G, Brockmeier V, Mollnes TE, Fagerhol MK, Venge P (1994) Reduced complement and granulocyte activation with heparin coated cardiopulmonary bypass. Ann Thorac Surg 58:472–477

    Article  PubMed  CAS  Google Scholar 

  33. Lundbland R, Moen O, Fosse E (1997) Endothelin-1 and neutrophil activation during heparin-coated ­cardiopulmonary bypass. Ann Thorac Surg 63:1361–1367

    Article  Google Scholar 

  34. Muehrcke DD, McCarthy PM, Kottke-Marchant K, Harasaki H, Pierre-Yared J, Borsh JA, Ogella DA, Cosgrove DM (1996) Biocompatibility of heparin-coated extracorporeal bypass circuits: a randomized, masked clinical trial. J Thorac Cardiovasc Surg 112:472–483

    Article  PubMed  CAS  Google Scholar 

  35. Te Velthuis H, Jansen PGM, Hack CE, Eijsman L, Wildevuur CRH (1996) Specific complement inhibition with heparin-coated extracorporeal circuits. Ann Thorac Surg 61:1153–1157

    Article  Google Scholar 

  36. Bouma M, Maessen J, Weerwind P, Dentener M, Fransen E, de Jong D, Buurman W (1997) Release of lipopolysaccharide toxicity-modulating proteins in patients undergoing cardiopulmonary bypass using noncoated and heparin-coated circuits. A clinical pilot study. Chest 111:577–583

    Article  PubMed  CAS  Google Scholar 

  37. Moen O, Hogasen K, Fosse E, Dregelid E, Brockmeier V, Venge P, Harboe M, Mollnes TE (1997) Attenuation of changes in leukocyte surface markers and complement activation with heparin-coated cardiopulmonary bypass. Ann Thorac Surg 63:105–111

    Article  PubMed  CAS  Google Scholar 

  38. Johnell M, Elgue G, Larsson R, Larsson A, Thelin S, Siegbahn A (2002) Coagulation, fibrinolysis and cell activation in patients and shed mediastinal blood during coronary artery bypass grafting with a new heparin-coated surface. J Thorac Cardiovasc Surg 124:321–332

    Article  PubMed  Google Scholar 

  39. Spiess B, Vocelka C, Cochran R, Soltow L, Chandler WL (1998) Heparin coated bypass circuits (Carmeda) suppress the release of tissue plasminogen activator during normothermic coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth 12:299–304

    Article  PubMed  CAS  Google Scholar 

  40. Laffey JG, Boylan JF, Cheng DC (2002) The systemic inflammatory response to cardiac surgery: implications for the anesthesiologist. Anesthesiology 97:215–252

    Article  PubMed  CAS  Google Scholar 

  41. Von Segesser LK, Weiss BM, Pasic M, Garcia E, Turina MI (1994) Risk and benefit of low systemic heparinization during open heart operations. Ann Thorac Surg 58:391–398

    Article  Google Scholar 

  42. Aldea GS, Doursounian BA, O’ Gara P, Treanor P, Shapira OM, Lazar HL, Shemin RJ (1996) Heparin-bonded circuits with a reduced anticoagulation protocol in primary CABG: a prospective, randomized study. Ann Thorac Surg 62:410–418

    Article  PubMed  CAS  Google Scholar 

  43. Ovrum E, Holen E, Tangen G, Brosstad F, Abdelnoor M, Ringdal MA, Oystese R, Istad R (1995) Completely heparinized cardiopulmonary bypass and reduced systemic heparin: clinical and hemostatic effects. Ann Thorac Surg 60:365–371

    Article  PubMed  CAS  Google Scholar 

  44. Ranucci M, Mazzucco A, Pessotto R, Grillone G, Casati V, Porreca L, Maugeri R, Meli M, Magagna P, Cirri S, Giomarelli P, Lorusso R, de Jong A (1999) Heparin-coated circuits for high-risk patients: a multicenter, prospective, randomized trial. Ann Thorac Surg 67:994–1000

    Article  PubMed  CAS  Google Scholar 

  45. Heyer EJ, Lee KS, Manspeizer HE, Mongero L, Spanier TB, Caliste X, Esrig B, Smith C (2002) Heparin-bonded cardiopulmonary bypass circuits reduce cognitive dysfunction. J Cardiothorac Vasc Anesth 16:37–42

    Article  PubMed  Google Scholar 

  46. Ovrum E, Tangen G, Tollofsrud S, Skeie B, Ringdal MA, Istad R, Oystese R (2011) Heparinized cardiopulmonary bypass circuits and low systemic anticoagulation: an analysis of nearly 6000 patients undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg 141:1145–1149

    Article  PubMed  Google Scholar 

  47. Wildevuur CR, Jansen PG, Bezemer PD, Kuik DJ, Eijsman L, Bruins P, De Jong AP, Van Hardevelt FW, Biervliet JD, Hasenkam JM, Kure HH, Knudsen L, Bellaiche L, Ahlburg P, Loisance DY, Baufreton C, Le Besnerais P, Bajan G, Matta A, Van Dyck M, Renotte MT, Ponlot-Lois A, Baele P, McGovern EA, Ahlvin E et al (1997) Clinical evaluation of Duraflo II heparin treated extracorporeal circulation circuits (2nd version). The European Working Group on heparin coated extracorporeal circulation circuits. Eur J Cardiothorac Surg 114:616–623

    Article  Google Scholar 

  48. Suhara H, Sawa Y, Nishimura M, Oshiyama H, Yokoyama K, Saito N, Matsuda H (2001) Efficacy of a new coating material, PMEA, for cardiopulmonary bypass circuits in a porcine model. Ann Thorac Surg 71:1603–1608

    Article  PubMed  CAS  Google Scholar 

  49. Ueyama K, Nishimura K, Nishina T, Nakamura T, Ikeda T, Komeda M (2004) PMEA coating of pump circuit and oxygenator may attenuate the early systemic inflammatory response in cardiopulmonary bypass surgery. ASAIO J 50:369–372

    PubMed  CAS  Google Scholar 

  50. Tanaka M, Motomura T, Kawada M, Anzai T, Kasori Y, Shiroya T, Shimura K, Onishi M, Mochizuki A (2000) Blood compatible aspects of poly(2-methoxyethylacrylate) (PMEA)-relationship between protein adsorption and platelet adhesion on PMEA surface. Biomaterials 21:1471–1481

    Article  PubMed  CAS  Google Scholar 

  51. Skrabal CA, Khosravi A, Westphal B, Steinhoff G, Liebold A (2006) Effects of poly-2-methoxyethylacrylate (PMEA)-coating on CPB circuits. Scand Cardiovasc J 40:224–229

    Article  PubMed  CAS  Google Scholar 

  52. De Somer F, Francois K, van Oeveren W, Poelaert J, De Wolf D, Ebels T, Van Nooten G (2000) Phosphorylcholine coating of extracorporeal circuits provides natural protection against blood activation by the material surface. Eur J Cardiothorac Surg 18:602–606

    Article  PubMed  Google Scholar 

  53. Ranucci M, Pazzaglia A, Isgro G, Cazzaniga A, Ditta A, Boncilli A, Cotza M, Carboni G, Brozzi S, Bonifazi C (2002) Closed, phosphorylcholine-coated circuit and reduction of systemic heparinization for cardiopulmonary bypass: the intraoperative ECMO concept. Int J Artif Organs 25:875–881

    PubMed  CAS  Google Scholar 

  54. Ranucci M, Isgrò G, Soro G, Canziani A, Menicanti L, Frigiola A (2004) Reduced systemic heparin dose with phosphorylcholine coated closed circuit in coronary operations. Int J Artif Organs 27:311–319

    PubMed  CAS  Google Scholar 

  55. Palatianos GM, Foroulis CN, Vassili MI, Astras G, Triantafillou K, Papadakis E, Lidoriki AA, Iliopoulou E, Melissari EN (2003) A prospective, double-blind study on the efficacy of the bioline surface-heparinized extracorporeal perfusion circuit. Ann Thorac Surg 761:129–135

    Article  Google Scholar 

  56. Ranucci M, Balduini A, Ditta A, Boncilli A, Brozzi S (2009) A systematic review of biocompatible cardiopulmonary bypass circuits and clinical outcome. Ann Thorac Surg 87:1311–1319

    Article  PubMed  Google Scholar 

  57. Huybregts RM, Veerman DP, Vonk AB, Nesselaar AF, Paulus RC, Thone-Passchier DH, Smith AL, de Vroege R (2006) First clinical experience with the air purge control and electrical remote-controlled tubing clamp in mini bypass. Artif Organs 30:721–724

    Article  PubMed  Google Scholar 

  58. Mitsumaru A, Yozu R, Matayoshi T, Morita M, Shin H, Tsutsumi K, Iino Y, Kawada S (2001) Efficiency of an air filter at the drainage site in a closed circuit with a centrifugal blood pump: an in vitro study. ASAIO J 47:692–695

    Article  PubMed  CAS  Google Scholar 

  59. Morita M, Yozu R, Matayoshi T, Mitsumaru A, Shin H, Kawada S (2000) Closed circuit cardiopulmonary bypass with centrifugal pump for open-heart surgery: new trial for air removal. Artif Organs 24:442–445

    Article  PubMed  CAS  Google Scholar 

  60. Willcox TW, Mitchell SJ, Gorman DF (1999) Venous air in the bypass circuit: a source of arterial line emboli exacerbated by vacuum assisted drainage. Ann Thorac Surg 68:1285–1289

    Article  PubMed  CAS  Google Scholar 

  61. Nollert G, Schwabenland I, Maktav D, Kur F, Christ F, Fraunberger P, Reichart B, Vicol C (2005) Miniaturized cardiopulmonary bypass in coronary artery bypass surgery: marginal impact on inflammation and coagulation but loss of safety margins. Ann Thorac Surg 80:2326–2332

    Article  PubMed  Google Scholar 

  62. Roosenhoff TP, Stehouwer MC, De Vroege R, Butter RP, Van Boven WJ, Bruins P (2010) Air removal efficiency of a venous bubble trap in a minimal extracorporeal circuit during coronary artery bypass grafting. Artif Organs 34:1092–1098

    Article  PubMed  Google Scholar 

  63. Gerriets T, Schwarz N, Sammer G, Baehr J, Stolz E, Kaps M, Kloevekorn WP, Bachmann G, Schönburg M (2010) Protecting the brain from gaseous and solid micro-emboli during coronary artery bypass grafting: a randomized controlled trial. Eur Heart J 31:360–368

    Article  PubMed  Google Scholar 

  64. Immer FF, Pirovino C, Gygax E, Englberger L, Tevaearai H, Carrel TP (2005) Minimal versus conventional cardiopulmonary bypass: assessment of intraoperative myocardial damage in coronary bypass surgery. Eur J Cardiothorac Surg 28:701–704

    Article  PubMed  Google Scholar 

  65. Takai H, Eishi K, Yamachika S, Hazama S, Ariyoshi T, Nishi K (2005) Demonstration and operative influence of low prime volume closed pump. Asian Cardiovasc Thorac Ann 13:65–69

    PubMed  Google Scholar 

  66. Shiiya N, Matsuzaki K, Kunihara T, Yasuda K (2005) Use of a soft reservoir bag in a fully heparin-coated closed-loop cardiopulmonary bypass system for distal aortic perfusion during aortic surgery. J Artif Organs 8:85–90

    Article  PubMed  CAS  Google Scholar 

  67. Ranucci M, Pavesi M, Mazza E, Bertucci C, Frigiola A, Menicanti L, Ditta A, Boncilli A, Conti D (1994) Risk factors for renal dysfunction after coronary surgery: the role of cardiopulmonary bypass technique. Perfusion 9:319–326

    Article  PubMed  CAS  Google Scholar 

  68. Ranucci M, Romitti F, Isgrò G, Cotza M, Brozzi S, Boncilli A, Ditta A (2005) Oxygen delivery during cardiopulmonary bypass and acute renal failure following coronary operations. Ann Thorac Surg 80:2213–2220

    Article  PubMed  Google Scholar 

  69. Habib RH, Zacharias A, Schwann TA, Riordan CJ, Durham SJ, Shah A (2003) Adverse effects of low hematocrit during cardiopulmonary bypass in the adult: should current practice be changed? J Thorac Cardiovasc Surg 125:1438–1450

    Article  PubMed  Google Scholar 

  70. Brown Mahoney C, Donnelly JE (2000) Impact of closed versus open venous reservoirs on patient outcome in isolated coronary bypass surgery. Perfusion 15:467–472

    Article  PubMed  CAS  Google Scholar 

  71. Eisses MJ, Seidel K, Aldea GS, Chandler WL (2004) Reducing hemostatic activation during cardiopulmonary bypass: a combined approach. Anesth Analg 98:1208–1216

    Article  PubMed  Google Scholar 

  72. von Segesser LK, Tozzi P, Mallbiabrrena I, Jegger D, Horisberger J, Corno A (2003) Miniaturization in cardiopulmonary bypass. Perfusion 18:219–224

    Article  Google Scholar 

  73. Ranucci M, Castelvecchio S (2009) Management of mini-cardiopulmonary bypass devices: is it worth the energy? Curr Opin Anaesthesiol 22:78–83

    Article  PubMed  Google Scholar 

  74. Rahe-Meyer N, Solomon C, Tokuno ML, Winterhalter M, Shrestha M, Hahn A, Tanaka K (2010) Comparative assessment of coagulation changes induced by two different types of heart-lung machine. Artif Organs 34:3–12

    Article  PubMed  Google Scholar 

  75. Ovrum E, Brosstad F, Am Holen E, Tangen G, Abdelnor M (1995) Effects on coagulation and fibrinolysis with reduced versus full systemic heparinization and heparin-coated cardiopulmonary bypass. Circulation 92:2579–2584

    Article  PubMed  CAS  Google Scholar 

  76. Benedetto U, Luciani R, Goracci M, Capuano F, Refice S, Angeloni E, Roscitano A, Sinatra R (2009) Miniaturized cardiopulmonary bypass and acute kidney injury in coronary artery bypass graft surgery. Ann Thorac Surg 88:529–535

    Article  PubMed  Google Scholar 

  77. Agati S, Ciccarello G, Trimarchi ES, Grasso D, Trimarchi G, Di Stefano S, Carmelo M (2007) Extracorporeal circulation, optimized: a pilot study. Artif Organs 31:377–383

    Article  PubMed  Google Scholar 

  78. Ti LK, Goh LB, Wong PS, Patsy Ong P, Goh SG, Lee CN (2008) Comparison of mini-cardiopulmonary bypass system with air-purge device to conventional bypass system. Ann Thorac Surg 85:994–1001

    Article  PubMed  Google Scholar 

  79. Kutschka I, Skorpil J, El Essawi A, Hajek T, Harringer W (2009) Beneficial effects of modern perfusion concepts in aortic valve and aortic root surgery. Perfusion 24:37–44

    Article  PubMed  CAS  Google Scholar 

  80. Yamut T (2002) FDA 51O(k) Premarket notification. Cardiovention CORx System K012325 http://www.accessdata.fda.gov/cdrh_docs/pdf/k012325.pdf

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anastasiadis, K., Antonitsis, P., Argiriadou, H. (2013). MECC Equipment. In: Principles of Miniaturized ExtraCorporeal Circulation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32756-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32756-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32755-1

  • Online ISBN: 978-3-642-32756-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics