Skip to main content

Connectivity Maintenance of a Heterogeneous Sensor Network

  • Chapter
Distributed Autonomous Robotic Systems

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 83))

Abstract

In this paper we derive connectivity constraints for a heterogeneous sensor network made up of sensing agents and mobile communication relays. With these constraints we develop feasible motion sets that can guarantee network connectivity. We also show how to reduce the number of communication constraints to allow the sensing agents to maximize their feasible motion sets and thus allow for a larger search area while maintaining network connectivity. A technique for shaping the network configuration is also presented that allows for biasing particular communication links within the network. Numerical simulations and preliminary experimental results verify the validity of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bollobàs, B.: Modern Graph Theory. Springer, New York (1998)

    Book  MATH  Google Scholar 

  2. Bullo, F., Cortés, J., Martínez, S.: Distributed Control of Robotic Networks. Applied Mathematics Series. Princeton University Press (2009), http://coordinationbook.info

  3. Cortez, R.A., Fierro, R., Wood, J.: Prioritized sensor detection via dynamic Voronoi-based navigation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5815–5820 (October 2009)

    Google Scholar 

  4. Dimarogonas, D.V., Johansson, K.H.: Decentralized connectivity maintenance in mobile networks with bounded inputs. In: IEEE International Conference on Robotics and Automation, pp. 1507–1512 (2008)

    Google Scholar 

  5. Fax, J.A., Murray, R.M.: Graph laplacian and stabilization of vehicle formations. In: Proceeding of the 15th IFAC, pp. 283–288 (2002)

    Google Scholar 

  6. Fink, J., Kumar, V.: Online methods for radio signal mapping with mobile robots. In: IEEE International Conference on Robotics and Automation, pp. 1940–1945 (2010)

    Google Scholar 

  7. Ghaffarkhah, A., Mostofi, Y.: Communication-aware target tracking using navigation functions - centralized case. In: International Conference on Robot Communication and Coordination (ROBOCOMM), pp. 1–8 (2009)

    Google Scholar 

  8. Gil, S., Schwager, M., Julian, B.J., Rus, D.: Optimizing communication in air-ground robot networks using decentralized control. In: IEEE International Conference on Robotics and Automation, pp. 1964–1971 (2010)

    Google Scholar 

  9. Hussein, I., Stipanović, D., Wang, Y.: Reliable coverage control using heterogeneous vehicles. In: IEEE Conference on Decision and Control, New Orleans, pp. 6142–6147 (2007)

    Google Scholar 

  10. Ji, M., Egerstedt, M.: Distributed coordination control of multiagent systems while preserving connectedness. IEEE Transactions on Robotics 23(4), 693–703 (2007)

    Article  Google Scholar 

  11. Kim, Y., Mesbahi, M.: On maximizing the second smallest eigenvalue of a state-dependent graph laplacian. IEEE Transactions on Automatic Control 51(1), 116–120 (2006)

    Article  MathSciNet  Google Scholar 

  12. Michael, N., Zavlanos, M.M., Kumar, V., Pappas, G.J.: Maintaining Connectivity in Mobile Robot Networks. In: Khatib, O., Kumar, V., Pappas, G.J. (eds.) Experimental Robotics. STAR, vol. 54, pp. 117–126. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Stachura, M., Frew, E.W.: Reliable coverage control using heterogeneous vehicles. In: AIAA Guidance, Navigation, and Control Conference, Toronto, Canada (2010)

    Google Scholar 

  14. Tanner, H.G., Jadbabaie, A., Pappas, G.: Stable flocking of mobile agents, Part I: Fixed topology. In: IEEE Conference on Decision and Control, pp. 2010–2015 (2003)

    Google Scholar 

  15. Tekdas, O., Wang, W., Isler, V.: Robotic routers: Algorithms and implementation. The International Journal of Robotics Research 29(1), 110–126 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy Andres Cortez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cortez, R.A., Fierro, R., Wood, J. (2013). Connectivity Maintenance of a Heterogeneous Sensor Network. In: Martinoli, A., et al. Distributed Autonomous Robotic Systems. Springer Tracts in Advanced Robotics, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32723-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32723-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32722-3

  • Online ISBN: 978-3-642-32723-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics