Skip to main content

Continuous Control of Style and Style Transitions through Linear Interpolation in Hidden Markov Model Based Walk Synthesis

  • Conference paper
Transactions on Computational Science XVI

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 7380))

Abstract

We present a Hidden Markov Model (HMM) based stylistic walk synthesizer, where the synthesized styles are combinations or exaggerations of the walk styles present in the training database. Our synthesizer is also capable of generating walk sequences with controlled style transitions. In a first stage, Hidden Markov Models of eleven different gait styles are trained, using a database of motion capture walk sequences. In a second stage, the probability density functions inside the stylistic models are interpolated or extrapolated in order to synthesize walks with styles or style intensities that were not present in the training database. A continuous model of the style parameter space is thus constructed around the eleven original walk styles. Qualitative user evaluation of the synthesized sequences showed that the naturalness of motions is preserved after linear interpolation between styles and that evaluators are sensitive to the interpolation factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brand, M., Hertzmann, A.: Style machines. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 183ā€“192 (2000)

    Google ScholarĀ 

  2. Bruderlin, A., Williams, L.: Motion signal processing. In: SIGGRAPH 1995 Proceedings, pp. 97ā€“104 (1995)

    Google ScholarĀ 

  3. Calinon, S., Guenter, F., Billard, A.: On Learning, Representing, and Generalizing a Task in a Humanoid Robot. IEEE Transactions on Systems, Man and CyberneticsĀ 37(2), 286ā€“298 (2007)

    ArticleĀ  Google ScholarĀ 

  4. Chiu, C., Marsella, S.: A style controller for generating virtual human behaviors. In: Proceedings of AAMAS 2011, The 10th International Conference on Autonomous Agents and Multiagent Systems, vol.Ā 3, pp. 1023ā€“1030 (2011)

    Google ScholarĀ 

  5. Elgammal, A., Lee, C.S.: The Role of Manifold Learning in Human Motion Analysis Human Motion Understanding, Modeling, Capture and Animation, pp. 1ā€“29 (2008)

    Google ScholarĀ 

  6. Forbes, K., Fiume, E.: An efficient search algorithm for motion data using weighted PCA. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 67ā€“76 (2005)

    Google ScholarĀ 

  7. Forsyth, D.A., Arikan, O., Ikemoto, L., Oā€˜Brien, J., Ramanan, D.: Computational Studies of Human Motion: Part 1, Tracking and Motion Synthesis. Foundations and Trends in Computer Graphics and VisionĀ 1(2/3) (2006)

    Google ScholarĀ 

  8. Geng, W., Yu, G.: Reuse of Motion Capture Data in Animation: A Review. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., Lā€™Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol.Ā 2669, pp. 620ā€“629. Springer, Heidelberg (2003)

    ChapterĀ  Google ScholarĀ 

  9. Glardon, P., Boulic, R., Thalmann, D.: PCA-based walking engine using motion capture data. In: Computer Graphics International, pp. 292ā€“298 (2004)

    Google ScholarĀ 

  10. Glardon, P., Boulic, R., Thalmann, D.: A Coherent Locomotion Engine Extrapolating Beyond Experimental Data. In: Proceedings of Computer Animation and Social Agent (CASA), Geneva, Switzerland, pp. 73ā€“84 (2004)

    Google ScholarĀ 

  11. Grassia, F.S.: Practical parameterization of rotations using the exponential map. Journal of Graphics ToolsĀ 3, 29ā€“48 (1998)

    ArticleĀ  Google ScholarĀ 

  12. Grudzinski, T.: Exploiting Quaternion PCA in Virtual Character Motion Analysis. In: Bolc, L., Kulikowski, J.L., Wojciechowski, K. (eds.) ICCVG 2008. LNCS, vol.Ā 5337, pp. 420ā€“429. Springer, Heidelberg (2009)

    ChapterĀ  Google ScholarĀ 

  13. Hsu, E., Pulli, K., Popovic, J.: Style Translation for Human Motion. In: SIGGRAPH 2005 Proceedings, pp. 1082ā€“1089 (2005)

    Google ScholarĀ 

  14. HTS working group: The HMM-based speech synthesis system (HTS) Version 2.1, http://hts.sp.nitech.ac.jp/ (accessed 2010)

  15. IGS-190. Animazoo (2010), http://www.animazoo.com

  16. Johnson, M.P.: Exploiting quaternions to support expressive interactive character motion. PhD Thesis (2002)

    Google ScholarĀ 

  17. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer Series in Statistic. Springer, New York (2002)

    MATHĀ  Google ScholarĀ 

  18. Lau, M., Bar-Joseph, Z., Kuffner, J.: Modeling Spatial and Temporal Variation in Motion Data. ACM Transactions on Graphics (SIGGRAPH ASIA )Ā 28(5), 171 (2009)

    Google ScholarĀ 

  19. Li, Y., Wang, T., Shum, H.: Motion texture: a two-level statistical model for character motion synthesis. In: Proc. of SIGGRAPH 2002, New York, NY, USA, pp. 465ā€“472 (2002)

    Google ScholarĀ 

  20. Lu, X., Hsu, R.-L., Jain, A.K., Kamgar-Parsi, B., Kamgar-Parsi, B.: Face Recognition with 3D Model-Based Synthesis. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol.Ā 3072, pp. 139ā€“146. Springer, Heidelberg (2004)

    ChapterĀ  Google ScholarĀ 

  21. Menache, A.: Understanding motion Capture for Computer Animation and Video Games. Morgan Kauffman Publishers Inc., San Francisco (1999)

    Google ScholarĀ 

  22. Min, J., Chan, Y., Chai, J.: Interactive generation of human animation with deformable motion models. ACM Trans. Graph.Ā 29(1), 9:1ā€“9:12 (2009)

    ArticleĀ  Google ScholarĀ 

  23. Min, J., Liu, H., Chai, J.: Synthesis and editing of personalized stylistic human motion. In: Proceedings of SI3D, pp. 39ā€“46 (2010)

    Google ScholarĀ 

  24. Pejsa, T., Pandzic, I.S.: State of the Art in Example-Based Motion Synthesis for Virtual Characters in Interactive Applications. Computer Graphics ForumĀ 29(1), 202ā€“226 (2010)

    ArticleĀ  Google ScholarĀ 

  25. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recognition. Proc. of IEEEĀ 77(2), 257ā€“286 (1989)

    ArticleĀ  Google ScholarĀ 

  26. Rose, C., Cohen, M.F., Bodenheimer, B.: Verbs and Adverbs: Multidimensional Motion Interpolation. IEEE Comput. Graph. Appl.Ā 18(5), 32ā€“40 (1998)

    ArticleĀ  Google ScholarĀ 

  27. Shapiro, A., Cao, Y., Faloutsos, P.: Style components. In: Proceedings of Graphics Interface, Quebec, Canada, pp. 33ā€“39 (2006)

    Google ScholarĀ 

  28. Shoemake, K.: Animating Rotations with Quaternion Curves. In: Proc. of SIGGRAPH 2005, San Francisco, vol.Ā 19(3), pp. 245ā€“254 (1985)

    Google ScholarĀ 

  29. Tanco, L.M., Hilton, A.: Realistic synthesis of novel human movements from a database of motion capture examples. In: Proc. of the Workshop on Human Motion (HUMO 2000), Washington DC, USA, pp. 137ā€“142 (2000)

    Google ScholarĀ 

  30. Taylor, G.W., Hinton, G.E.: Factored conditional restricted Boltzmann Machines for modeling motion style. In: ICML 2009 Proceedings of the 26th Annual International Conference on Machine Learning, pp. 1025ā€“1032 (2009)

    Google ScholarĀ 

  31. Tilmanne, J., Dutoit, T.: Expressive Gait Synthesis Using PCA and Gaussian Modeling. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds.) MIG 2010. LNCS, vol.Ā 6459, pp. 363ā€“374. Springer, Heidelberg (2010)

    ChapterĀ  Google ScholarĀ 

  32. Tilmanne, J., Moinet, A., Dutoit, T.: Stylistic gait synthesis based on hidden Markov models. EURASIP Journal on Advances in Signal Processing, 72 (2012)

    Google ScholarĀ 

  33. Tilmanne, J., Sebbe, R., Dutoit, T.: A Database for Stylistic Human Gait Modeling and Synthesis. In: Proceedings of the eNTERFACE 2008 Workshop on Multimodal Interfaces, Paris, France, pp. 91ā€“94 (2008)

    Google ScholarĀ 

  34. Toda, T., Tokuda, K.: A Speech Parameter Generation Algorithm Considering Global Variance for HMM-Based Speech Synthesis. IEICE-Transactions on Information and SystemsĀ 90(5), 816ā€“824 (2007)

    ArticleĀ  Google ScholarĀ 

  35. Tokuda, K., Yoshimura, T., Masuko, T., Kobayashi, T., Kitamura, T.: Speech parameter generation algorithms for HMM-based speech synthesis. In: Proc. of ICASSP (June 2000)

    Google ScholarĀ 

  36. Troje, N.F.: Retrieving information from human movement patterns. In: Understanding Events: How Humans See, Represent, and Act on Events, pp. 308ā€“334. Oxford University Press (2008)

    Google ScholarĀ 

  37. Unuma, M., Anjyo, K., Takeuchi, R.: Fourier principles for emotion-based human figure animation. In: SIGGRAPH 1995 Proceedings, pp. 91ā€“96 (1995)

    Google ScholarĀ 

  38. Urtasun, R., Glardon, P., Boulic, R., Thalmann, D., Fua, P.: Style-based Motion Synthesis. Computer Graphics ForumĀ 23(4), 799ā€“812 (2004)

    ArticleĀ  Google ScholarĀ 

  39. Wang, Y., Liu, Z., Zhou, L.: Automatic 3D Motion Synthesis with Time-Striding Hidden Markov Model. In: Yeung, D.S., Liu, Z.-Q., Wang, X.-Z., Yan, H. (eds.) ICMLC 2005. LNCS (LNAI), vol.Ā 3930, pp. 558ā€“567. Springer, Heidelberg (2006)

    ChapterĀ  Google ScholarĀ 

  40. Wang, Y., Liu, Z., Zhou, L.: Learning Style-directed Dynamics of Human Motion for Automatic Motion Synthesis. In: IEEE Conference on Systems, Man, and Cybernetics 2006, Taiwan, pp. 4428ā€“4433 (2006)

    Google ScholarĀ 

  41. Wang, Y., Xie, L., Liu, Z., Zhou, L.: The SOMN-HMM Model and Its Application to Automatic Synthesis of 3D Character Animation. In: IEEE Conference on Systems, Man, and Cybernetics 2006, Taiwan, pp. 4948ā€“4952 (2006)

    Google ScholarĀ 

  42. Wecker, L., Samavati, F., Gavrilova, M.: A multiresolution approach to iris synthesis. Computers & GraphicsĀ 34(4), 468ā€“478 (2010)

    ArticleĀ  Google ScholarĀ 

  43. Yamagishi, J., Nose, T., Zen, H., Ling, Z.H., Toda, T., Tokuda, K., King, S., Renals, S.: Robust speaker-adaptive HMM-based text-to-speech synthesis. IEEE Transactions on Audio, Speech, and Language ProcessingĀ 17(6), 1208ā€“1230 (2009)

    ArticleĀ  Google ScholarĀ 

  44. Yamagishi, J., Kobayashi, T.: Average-voice-based speech synthesis using HSMM-based speaker adaptation and adaptive training. IEICE TRANSACTIONS on Information and SystemsĀ 90(2), 533ā€“543 (2007)

    ArticleĀ  Google ScholarĀ 

  45. Yamagishi, J., Kobayashi, T., Nakano, Y., Ogata, K., Isogai, J.: Analysis of speaker adaptation algorithms for HMM-based speech synthesis and a constrained SMAPLR adaptation algorithm. IEEE Transactions on Audio, Speech, and Language ProcessingĀ 17(1), 66ā€“83 (2009)

    ArticleĀ  Google ScholarĀ 

  46. Yamazaki, T., Niwase, N., Yamagishi, J., Kobayashi, T.: HumanWalking Motion Synthesis Based on Multiple Regression Hidden Semi-Markov Model. In: 2005 International Conference on Cyberworlds (CW 2005), pp. 445ā€“452 (2005)

    Google ScholarĀ 

  47. Yoshimura, T., Tokuda, K., Masuko, T., Kobayashi, T., Kitamura, T.: Duration modeling for HMM-based speech synthesis. In: Fifth International Conference on Spoken Language Processing (ICSLP), pp. 29ā€“32 (1998)

    Google ScholarĀ 

  48. Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell, J., Ollason, D., Povey, D., Valtchev, V., Woodland, P.: The HTK Book (for HTK Version 3.4) (2009)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tilmanne, J., Dutoit, T. (2012). Continuous Control of Style and Style Transitions through Linear Interpolation in Hidden Markov Model Based Walk Synthesis. In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science XVI. Lecture Notes in Computer Science, vol 7380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32663-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32663-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32662-2

  • Online ISBN: 978-3-642-32663-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics