Skip to main content

Physically-Based Haptic Rendering for Virtual Hand Interaction

  • Conference paper
Transactions on Computational Science XVI

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 7380))

  • 578 Accesses

Abstract

Based on our previous research, this paper integrated four aspects of the haptic rendering for virtual hand interaction, which included the contact, static grasp, movement, and collision of virtual hand. We presented a method of contact force rendering of virtual hand based on the human fingers’ force characteristics. A physically-based static grasp force rendering method was used to calculate the grasp force for virtual hand holding objects. Then, we deduced the algorithms to generate the realistic action force of the virtual hand grasping an object and moving in virtual environments. The algorithms were based on the kinematics and dynamics of the robot theory. With the impulse theorem and coefficient of elastic recovery, we analyzed the collision force with friction for virtual hand interaction. A special series of experimental results showed that the physically-based haptic rendering approaches for virtual hand interaction were computationally efficient while retaining a good level of realism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moccozet, L., Huang, Z., Thalmann, M.: Virtual Hand Interactions with 3D World. In: Proc. Multimedia Modeling 1997, pp. 307–322. World Scientific (1997)

    Google Scholar 

  2. Srinivasan, M., Basdogan, C.: Haptics in Virtual Environments: Taxonomy, Research Status, and Challenges. Computer & Graphics 21, 393–404 (1997)

    Article  Google Scholar 

  3. Batteau, L., Liu, A., Maintz, J., Bhasin, Y., Bowyer, M.: A Study on the Perception of Haptics in Surgical Simulation. In: Cotin, S., Metaxas, D. (eds.) ISMS 2004. LNCS, vol. 3078, pp. 185–192. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Stewart, P., Buttolo, P., Chen, Y.: CAD Data Representations for Haptic Virtual Prototyping. In: Proc. ASME Design Engineering Technical Conferences, pp. 14–17 (1997)

    Google Scholar 

  5. Baxter, L., Otaduy, F.: Haptic Interaction for Creative Pocesses with Simulated Media. In: Proc. IEEE Robotics and Automation, vol. 1, pp. 598–604 (2002)

    Google Scholar 

  6. Wenzhen, Y., Shuming, G., Huagen, W., Yushen, L., Wenhua, C.: Contact Force Rendering of Virtual Hand Interaction Based on Human fingers’ force characteristics. Journal of Zhejiang University 42(12), 2145–2150 (2008)

    Google Scholar 

  7. Wenzhen, Y., Shuming, G., Huagen, W., ZhenHua, Z., Yang, L.: Force Generation and Feedback for Physically-Based Virtual Hand Grasp. Chinese Journal of Computer 28(6), 959–964 (2005)

    Google Scholar 

  8. Wenzhen, Y., Wenhua, C.: Haptic Rendering of Virtual Hand Moving Objects. In: 2011 International Conference on Cyberworlds, pp. 113–119 (2011)

    Google Scholar 

  9. Wenzhen, Y., Shuming, G., Huagen, W., ZhenHua, Z., Yang, L.: Physically-based Haptic Display of Rigid Body Collisions with Virtual Hand Interaction. Chinese Journal of Computer 29(12), 2096–2173 (2006)

    Google Scholar 

  10. Ruspini, D., Kolarov, K., Khatib, O.: The Haptic Display of Complex Graphical Environments. In: Proc. 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 345–352 (1997)

    Google Scholar 

  11. Zilles, C., Salisbury, J.: A Constraintbased God-object Method for Haptic Display. In: Proc. IEE/RSJ International Conference on Intelligent Robots and Systems, Human Robot Interaction, and Cooperative Robots, vol. 3, pp. 146–151 (1995)

    Google Scholar 

  12. Massie, T., Salisbury, J.: The PHANToM Haptic Interface: a Device for Probing Virtual Objects. In: Pro. ASME Dynamic Systems and Control Division, DSC, vol. 55(1), pp. 295–301 (November 1994)

    Google Scholar 

  13. Salisbury, J., Brock, D., Massie, T., Swarup, N., Zilles, C.: Haptic Rendering: Programming Touch Interaction with Virtual Objects. In: Proc. ACM Symposium on Interactive 3D Graphics, pp. 123–130 (1995)

    Google Scholar 

  14. Basdogan, C., Ho, C., Srinivasan, M.: A Ray-based Haptic Rendering Technique for Displaying Shape and Texture of 3D Objects in Virtual Environments. In: Proc. ASME Dynamic Systems and Control Division, vol. 61, pp. 77–84 (1997)

    Google Scholar 

  15. Borst, C., Indugula, A.: Realistic Virtual Grasping. In: Proc. IEEE Virutal Reality 2005, pp. 91–98 (2005)

    Google Scholar 

  16. Ho, C., Basdogan, C., Srinivasan, M.: Haptic Rendering: Point and Ray-Based Interactions. In: Proceedings of the Second PHANToM Users Group Workshop, pp. 6–10 (1997)

    Google Scholar 

  17. Popescu, V., Bouzit, M.: Virtual Reality Simulation Modeling for a Haptic Glove. In: Computer Animation 1999 Conference, pp. 195–200 (1999)

    Google Scholar 

  18. Bergamasco, M., Deglapos, P., Bergamasco, M.: A Realistic Approach for Grasping and Moving Virtual Objects. In: IEEE International Conference on Intelligent Robots and Systems (IROS 1994), pp. 717–724 (1994)

    Google Scholar 

  19. Tzafestas, C.S.: Whole-hand Kinesthetic Feedback and Haptic Perception in Dexterous Virtual Manipulation. IEEE Trans. on Sys. Man and Cybernatics 33(1), 100–113 (2003)

    Article  MathSciNet  Google Scholar 

  20. Iwata, H.: Artificial Reality with Force-feedback: Development of Desktop Virtual Space with Compact Master Manipulator. Computer Graphics 24(4), 165–170 (1990)

    Article  MathSciNet  Google Scholar 

  21. SDKHand, http://www.immersion.com/products/3d/interaction/cybergrasp.shtml

  22. Murray, L.: Mathematical Introduction to Robotic Manipulation. CRC Press (1994)

    Google Scholar 

  23. Huagen, W., Yang, L., Shuming, G., Qunsheng, P.: Realistic Virtual Hand Modeling with Applications for Virtual Grasping. In: Proc. ACM SIGGRAPH International Conference on Virtual Reality Continuum and its Applications in Industry, pp. 81–87 (2004)

    Google Scholar 

  24. CAVELib Manual, http://www.vrco.com/CAVE_USER

  25. LINDDO System Inc. LINDO API User’s Manual, http://www.lindo.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wenzhen, Y., Zhigen, P., Wenhua, C. (2012). Physically-Based Haptic Rendering for Virtual Hand Interaction. In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science XVI. Lecture Notes in Computer Science, vol 7380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32663-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32663-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32662-2

  • Online ISBN: 978-3-642-32663-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics