Skip to main content

Water Use Strategies of Plants Under Drought Conditions

  • Chapter
  • First Online:
Plant Responses to Drought Stress

Abstract

The growing concerns about water scarcity have focused more attention on water management in agriculture and promotion of water conservation through improved water use efficiency (WUE). Depending on the main purpose of the study, WUE can be estimated at multiple scales, from leaf to whole plant, crop, yield, and ecosystem levels. Drought resistance and WUE are not synonymous and their association is often misunderstood. Effectively, two water use strategies may be employed by woody plants under drought conditions. The prodigal water use behavior is beneficial in conditions where water supply is interrupted for short periods only. The conservative water use is favorable in conditions where a long dry period prevails and is associated with high capacity for drought resistance and slow growth rates. In this chapter, we also examine how human manipulation such as breeding and agricultural management techniques will offer new opportunities to improve plant water use under drought conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alamillo J, Almoguera C, Bartels D, Jordano J (1995) Constitutive expression of small heat shock proteins in vegetative tissues of the resurrection plant C. plantagineum. Plant Mol Biol 29(5):1093–1099

    PubMed  CAS  Google Scholar 

  • Allred BW, Fuhlendorf SD, Monaco TA, Will RE (2010) Morphological and physiological traits in the success of the invasive plant Lespedeza cuneata. Biol Invasions 12:739–749

    Google Scholar 

  • Alpert P, Oliver MJ (2002) Drying without dying. In: Black M, Pritchard H (eds) Desiccation and survival in plants: drying without dying. CAB International, Wallingford, pp 4–31

    Google Scholar 

  • Amthor JS (2000) The mccree-de wit-penning de vries-thornley respiration paradigms: 30 years later. Ann Botany 86:1–20

    CAS  Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Botany 89:925–940

    Google Scholar 

  • Arndt SK (2000) Mechanisms of drought resistance in the tropical fruit tree Ziziphus. PhD Thesis, Vienna

    Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2012) Regulation of root water uptake under abiotic stress conditions. J Exp Bot 63(1):43–57

    PubMed  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    PubMed  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    CAS  Google Scholar 

  • Atlin G (2003) Improving drought tolerance by selecting for yield. In: Fischer KS, Lafitte R, Fukai S, Atlin G, Hardy B (eds) Breeding rice for drought-prone environments. International Rice Research Institute, Los Baños (Philippines), pp 14–22

    Google Scholar 

  • Bacelar EA, Correia CM, Moutinho-Pereira JM, Gonçalves B, Lopes JI, Torres-Pereira JM (2004) Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. Tree Physiol 24:233–239

    PubMed  Google Scholar 

  • Bacelar EA, Moutinho-Pereira JM, Gonçalves BC, Ferreira HF, Correia CM (2007a) Changes in growth, gas exchange, xylem hydraulic properties and water use efficiency of three olive cultivars under contrasting water availability regimes. Environ Exp Bot 60:183–192

    CAS  Google Scholar 

  • Bacelar EA, Moutinho-Pereira JM, Goncalves BC, Lopes JI, Correia CM (2009) Physiological responses of different olive genotypes to drought conditions. Acta Physiol Plant 31(3):611–621

    CAS  Google Scholar 

  • Bacelar EA, Santos DL, Moutinho-Pereira JM, Gonçalves BC, Ferreira HF, Correia CM (2006) Immediate responses and adaptative strategies of three olive cultivars under contrasting water availability regimes: changes on structure and chemical composition of foliage and oxidative damage. Plant Sci 170(3):596–605

    CAS  Google Scholar 

  • Bacelar EA, Santos DL, Moutinho-Pereira JM, Lopes JI, Gonçalves BC, Ferreira TC, Correia CM (2007b) Physiological behavior, oxidative damage and antioxidative protection of olive trees grown under different irrigation regimes. Plant Soil 292:1–12

    CAS  Google Scholar 

  • Bacon MA (2004) Water use efficiency in plant biology. Blackwell Publishing CRC Press, Oxford

    Google Scholar 

  • Baeza P, Ruiz C, Cuevas E, Sotés V, Lissarrague J (2005) Ecophysiological and agronomic response of Tempranillo grapevines to four training systems. Am J Enol Viticul 56:129–138

    Google Scholar 

  • Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer Ch, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechel W, Paw KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Willson K, Wosfsy S (2001) Fluxnet: a tool to study the temporal and spatial variability of ecosystem scale carbon dioxide, water vapor, and energy flux densities. B Am Meteorol Soc 82:2415–2434

    Google Scholar 

  • Bänzinger M, Edmeades GO, Beck D, Bellon M (2000) Breeding for drought and nitrogen stress tolerance in maize: from theory to practice. D.F., Cimmyt, Mexico

    Google Scholar 

  • Bartels D, Schneider K, Terstappen G, Piatkowski D, Salamini F (1990) Molecular cloning of abscisic acid–modulated genes which are induced during desiccation of the resurrection plant C. plantagineum. Planta 181:27–34

    CAS  Google Scholar 

  • Baruch Z, Goldstein G (1999) Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia 121:183–192

    Google Scholar 

  • Blicker PS, Olson BE, Wraith JM (2003) Water use and water-use efficiency of the invasive Centaurea maculosa and three native grasses. Plant Soil 254:371–381

    CAS  Google Scholar 

  • Bloom AJ, Zwieniecki MA, Passioura JB, Randall LB, Holbrook NM, St.Crair DA (2004) Water relations under root chilling in a sensitive and tolerant tomato species. Plant, Cell Environ 27:971–979

    Google Scholar 

  • Blum A (1998) Plant breeding for stress environments. CRC Press, Boca Raton

    Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agr Res 56:1159–1168

    Google Scholar 

  • Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crop Res 112:119–123

    Google Scholar 

  • Blum A (2011) Plant breeding for water-limited environments. Springer Science+Business Media, New York

    Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    PubMed  CAS  Google Scholar 

  • Bongi G, Mencuccini M, Fontanazza G (1987) Photosynthesis of olive leaves: effect of light flux density, leaf age, temperature, peltates and H2O vapour pressure deficit on gas exchange. J Am Soc Hortic Sci 112:143–148

    Google Scholar 

  • Bota J, Flexas J, Medrano H (2001) Genetic variability of photosynthesis and water use in Balearic grapevine cultivars. Ann Appl Biol 138:353–365

    Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Response to abiotic stresses. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists Press, Rockville, pp 1158–1203

    Google Scholar 

  • Bruce WB, Edmeades GO, Barker TC (2002) Molecular and physiological approaches to maize improvement for drought tolerance. J Exp Bot 53:13–25

    PubMed  CAS  Google Scholar 

  • Bryla DR, Duniway JM (1997) Effects of mycorrhizal infection on drought tolerance and recovery in safflower and wheat. Plant Soil 197:95–103

    CAS  Google Scholar 

  • Burns JH (2006) Relatedness and environment affect traits associated with invasive and noninvasive introduced Commelinaceae. Ecol Appl 16(4):1367–1376

    PubMed  Google Scholar 

  • Burns JH, Winn AA (2006) A comparison of plastic responses to competition by invasive and non-invasive congeners in the Commelinaceae. Biol Invasions 8:797–807

    Google Scholar 

  • Campos H, Cooper M, Habben JE, Edmeades GO, Schussler JR (2004) Improving drought tolerance in maize: a view from industry. Field Crop Res 90:19–34

    Google Scholar 

  • Carbonneau A, Casteran P, Leclair Ph (1981) Principles de choix de systèmes de conduite pour des vignobles temperes et definitions pratiques utilisables en reglementation. Connaiss Vigne Vin 15(2):97–124

    Google Scholar 

  • Cavaleri MA, Sack L (2010) Comparative water use of native and invasive plants at multiple scales: a global meta-analysis. Ecology 91(9):2705–2715

    PubMed  Google Scholar 

  • Cellier F, Conejero G, Casse F (2000) Dehydrin transcript fluctuations during a day/night cycle in drought-stressed sunflower. J Exp Bot 51:299–304

    PubMed  CAS  Google Scholar 

  • Centritto M (2005) Photosynthetic limitations and carbon partitioning in cherry in response to water deficit and elevated [CO2]. Agricult Ecosys Environ 106:233–242

    CAS  Google Scholar 

  • Cernusak LA, Winter K, Aranda J, Turner BL (2008) Conifers, angiosperm trees, and lianas: growth, whole-plant water and nitrogen use efficiency, and stable isotope composition (δ 13C and δ 18O) of seedlings grown in a tropical environment. Plant Physiol 148:642–659

    PubMed  CAS  Google Scholar 

  • Chalmers DJ, Mitchell PD, van Heek L (1981) Control of peach tree growth and productivity by regulated water supply, tree density, and summer pruning. J Am Soc Hort Sci 106:307–312

    Google Scholar 

  • Chaves MM (1991) Effects of water deficits on carbon assimilation. J Exp Bot 42:1–16

    CAS  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant response to drought: from genes to the whole plant. Funct Plant Biol 30:239–264

    CAS  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CP, Osório ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field. Photosynthesis and growth. Ann Bot 89:907–916

    PubMed  CAS  Google Scholar 

  • Chen THH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    PubMed  CAS  Google Scholar 

  • Chrispeels MJ, Agre P (1994) Aquaporins: water channel proteins of plant and animal cells. Trends Biochem Sci 19:421–425

    PubMed  CAS  Google Scholar 

  • Close T (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plantarum 97:795–803

    CAS  Google Scholar 

  • Conde A, Silva P, Agasse A, Conde C, Gerós H (2011) Mannitol transport and mannitol dehydrogenase activities are coordinated in Olea europaea under salt and osmotic stresses. Plant Cell Physiol 52(10):1766–1775

    PubMed  CAS  Google Scholar 

  • Condon AG, Richards RA, Rebetzke GJ, Farquhar GD (2004) Breeding for high water-use efficiency. J Exp Botany 55:2447–2460

    CAS  Google Scholar 

  • Conejero W, Alarcón JJ, García-Orellana Y, Nicolás E, Torrecillas A (2007) Evaluation of sap flow and trunk diameter sensors used for irrigation scheduling in early maturing peach trees. Tree Physiol 27:1753–1759

    PubMed  CAS  Google Scholar 

  • Connor DJ (2005) Adaptation of olive (Olea europaea L.) to water-limited environments. Aust J Agric Res 56:1181–1189

    Google Scholar 

  • Cooper M, Delacy IH, Eisemann RL (1993) Recent advances in the study of genotype × environment interactions and their application to plant breeding. In: Imrie BC, Hacker JB (eds) Focused plant improvement: towards responsible and sustainable agriculture. In: Proceedings tenth Australian plant breeding conference, Vol 1. Organising Committee, Australian Convention and Travel Service, Canberra, pp 116–131

    Google Scholar 

  • Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu Rev Ecol Evol Syst 34:183–211

    Google Scholar 

  • Dry PR, Loveys BR (1998) Factors influencing grapevine vigour and the potential for control with partial rootzone drying. Aust J Grape Wine Res 4:140–148

    Google Scholar 

  • Emmerich WE (2007) Ecosystem water use efficiency in a semiarid shrubland and grassland community. Rangeland Ecol Manage 60:464–470

    Google Scholar 

  • Fahn A, Werker E, Baas P (1986) Wood anatomy and identification of trees and shrubs from Israel and adjacent regions. Isr Acad Sci Hum, Jerusalem

    Google Scholar 

  • FAO (2010) Climate change implications for food security and natural resources management in Africa. Twenty-sixth regional conferences for Africa. Luanda, Angola

    Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    CAS  Google Scholar 

  • Feng Y-L, Fu G-L, Zheng Y-L (2008) Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies between invasive and noninvasive alien congeners. Planta 228:383–390

    PubMed  CAS  Google Scholar 

  • Fereres E, Evans RG (2006) Irrigation of fruit trees and vines: an introduction. Irrigation Sci 24:55–57

    Google Scholar 

  • Fereres MA Soriano (2007) Deficit irrigation for reducing agricultural water use. J Exp Bot 58:147–159

    PubMed  CAS  Google Scholar 

  • Fernández JE, Green SR, Caspari HW, Diaz-Espejo A, Cuevas MV (2008) The use of sap flow measurements for scheduling irrigation in olive, apple and Asian pear trees and in grapevines. Plant Soil 305:91–104

    Google Scholar 

  • Fleury D, Jefferies S, Kuchel H, Langridge P (2010) Genetic and genomic tools to improve drought tolerance in wheat. J Exp Bot 61(12):3211–3222

    PubMed  CAS  Google Scholar 

  • Flexas J, Bota J, Escalona JM, Sampol B, Medrano H (2002) Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Funct Plant Biol 29:461–471

    Google Scholar 

  • Flexas J, Galmes J, Galle A, Gulias J, Pou A, Ribas-Carbo M, Tomas M, Medrano H (2010) Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Aust J Grape Wine Res 16:106–121

    CAS  Google Scholar 

  • Fukai S, Cooper M (1995) Development of drought-resistant cultivars using physio-morphological traits in rice. Field Crop Res 40:67–86

    Google Scholar 

  • Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion in low-resource systems. Nature 446:1079–1081

    PubMed  CAS  Google Scholar 

  • Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophylic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275:5668–5674

    PubMed  CAS  Google Scholar 

  • Glenn DM, Puterka GJ (2005) Particle films: a new technology for agriculture. Hortic Rev 31:1–45

    CAS  Google Scholar 

  • Grant OM, Tronina L, Jones HG, Chaves MM (2007) Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes. J Exp Bot 58:815–825

    PubMed  CAS  Google Scholar 

  • Grotkopp E, Rejmánek M (2007) High seedling relative growth rate and specific leaf area are traits of invasive species: phylogenetically independent contrasts of woody angiosperms. Am J Bot 94(4):526–532

    PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Hamilton EW, Heckathorn SA (2001) Mitochondrial adaptations to sodium chloride: complex I is protected by anti-oxidants and small heat-shock proteins, while complex II is protected by proline and betaine. Plant Physiol 126:166–1274

    Google Scholar 

  • Hamilton MA, Murray BR, Cadotte M, Hose GC, Baker AC, Harris CJ, Licari D (2005) Life-history correlates of plant invasiveness at regional and continental scales. Ecol Lett 8:1066–1074

    Google Scholar 

  • Hendrick JP, Hartl FU (1995) The role of molecular chaperones in protein folding. Faseb J 9:1559–1569

    PubMed  CAS  Google Scholar 

  • Heschel MS, Donohue K, Hausmann N, Schmitt J (2002) Population differentiation and natural selection for water-use efficiency in Impatiens capensis (Balsaminaceae). Int J Plant Sci 163(6):907–912

    Google Scholar 

  • Hill JP, Germino MJ, Wraith JM, Olson BE, Swan MB (2006) Advantages in water relations contribute to greater photosynthesis in C. maculosa compared with established grasses. Int J Plant Sci 167(2):269–277

    Google Scholar 

  • Hong S-W, Vierling E (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. P Natl Acad Sci U S A 97:4392–4397

    CAS  Google Scholar 

  • Huglin P, Schneider C (1998) Biologie et écologie de la vigne. Technique and Documentation, 2e éd. Paris

    Google Scholar 

  • Ingram J Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    PubMed  Google Scholar 

  • Intrieri C, Poni S, Rebucci B, Magnanini E (1998) Row orientation effects on whole-canopy gas exchange of potted and field-grown grapevines. Vitis 37(4):147–154

    CAS  Google Scholar 

  • Ionenko IF, Anisimov AV, Dautova NR (2010) Effect of temperature on water transport through aquaporins. Biol Plant 54:488–494

    Google Scholar 

  • IPCC (2011) The special report on managing the risks of extreme events and disasters to advance climate change adaptation. http://www.ipcc.ch/ Cited 1 Dez 2011

  • Jackson P, Robertson M, Cooper M, Hammer G (1996) The role of physiological understanding in plant breeding: from a breeding perspective. Field Crop Res 49:11–37

    Google Scholar 

  • Jiang L-F, Luo Y-Q, Chen J-K, Li B (2009) Ecophysiological characteristics of invasive Spartina alterniflora and native species in salt marshes of Yangtze River estuary, China. Est Coast Shelf Sci 81:74–82

    Google Scholar 

  • Jifon JL, Syvertsen JP (2003) Kaolin particle film applications can increase photosynthesis and water use efficiency of ‘Ruby red’ grapefruit leaves. J Am Soc Hortic Sci 128:107–111

    CAS  Google Scholar 

  • Jones H (2004) What is water use efficiency? In: Bacon MA (ed) Water use efficiency in plant biology. Blackwell Publishing CRC Press, Oxford, pp 27–41

    Google Scholar 

  • Jones HG (1992) Plants and microclimate: a quantitative approach to environmental plant physiology, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Karabourniotis G, Bornman J (1999) Penetration of UV-A, UV-B and blue light through the leaf trichome layers of two xeromorphic plants, olive and oak, measured by optical fibre microprobes. Physiol Plantarum 105:655–661

    CAS  Google Scholar 

  • Karl TR, Melillo JM, Peterson TC (eds) (2009) Global climate change impacts in the United States. Cambridge University Press, Cambridge

    Google Scholar 

  • Kaya C, Higgs D, Kirnak H, Tas I (2003) Mycorrhizal colonisation improves fruit yield and water use efficiency in watermelon (Citrullus lanatus Thunb.) grown under well-watered and water-stressed conditions. Plant Soil 253:287–292

    CAS  Google Scholar 

  • Keller M (2005) Deficit irrigation and vine mineral nutrition. Am J Enol Vitic 56(3):267–283

    CAS  Google Scholar 

  • Kloeppel BD, Abrams MD (1995) Ecophysiological attributes of the native Acer saccharum and the exotic Acer platanoides in urban oak forests in Pennsylvania, U S A. Tree Physiol 15:739–746

    PubMed  Google Scholar 

  • Kozlowski TT, Kramer PJ, Pallardy SG (1991) The physiological ecology of woody plants. Academic, San Diego

    Google Scholar 

  • Kozlowski TT, Pallardy SG (1997) Physiology of woody plants, 2nd edn. Academic, San Diego

    Google Scholar 

  • Kriedemann PE, Goodwin I (2003) Regulated deficit irrigation and partial root-zone drying. Irrigation insights No.3. In: Currey A (ed) Land and water Australia, Canberra, p 102

    Google Scholar 

  • Lake JC, Leishman MR (2004) Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biol Conserv 117:215–226

    Google Scholar 

  • Larcher W (1995) Physiological plant ecology, 3rd edn. Springer, Berlin

    Google Scholar 

  • Lee D, Graham R (1986) Leaf optical properties of rainforest sun and extreme shade plants. Am J Bot 73:1100–1108

    Google Scholar 

  • Leishman MR, Haslehurst T, Ares A, Baruch Z (2007) Leaf trait relationships of native and invasive plants: community- and global-scale comparisons. New Phytol 176:635–643

    PubMed  CAS  Google Scholar 

  • Leon J, Bukovac M (1978) Cuticle development and surface morphology of olive leaves with reference to penetration of foliar-applied chemicals. J Am Soc Hortic Sci 103:465–472

    CAS  Google Scholar 

  • Levitt J (1972) Responses of plants to environmental stresses. Academic, New York

    Google Scholar 

  • Liakoura V, Stavrianakou S, Liakopoulos G, Karabourniotis G, Manetas Y (1999) Effects of UV-B radiation on Olea europaea: comparisons between a greenhouse and a field experiment. Tree Physiol 19:905–908

    PubMed  Google Scholar 

  • Lipecki J, Berbeć S (1997) Soil management in perennial crops: orchards and hop gardens. Soil Till Res 43:169–184

    Google Scholar 

  • Liu A, Plenchette C, Hamel C (2007) Soil nutrient and water providers: how arbuscular mycorrhizal mycelia support plant performance in a resource limited world. In: Hamel C, Plenchette C (eds) Mycorrhizae in crop production, Haworth Press, Inc, Philadelphia, pp 37–66

    Google Scholar 

  • Lovisolo C, Schubert A (1998) Effects of water stress on vessel size and xylem hydraulic conductivity in Vitis vinifera L. J Exp Bot 49:693–700

    CAS  Google Scholar 

  • Ludlow MM (1980) Adaptive significance of stomatal responses to water stress. In: Turner NC, Kramer PJ (eds) Adaptations of plants to water and high temperature stress. Wiley Interscience, New York, pp 123–138

    Google Scholar 

  • Ludlow MM (1989) Strategies of response to water stress. In: Kreeb KH, Richter H, Hinckley TM (eds) Structural and functional responses to environmental stresses. SPB Academic Publishing, The Hague, pp 269–281

    Google Scholar 

  • Maroco JP, Pereira JS, Chaves MM (2000) Growth, photosynthesis and water use efficiency of two C4 Sahelian grasses subjected to water deficits. J Arid Environ 45:119–137

    Google Scholar 

  • Masle J, Gilmore SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436:866–870

    PubMed  CAS  Google Scholar 

  • McAlpine KG, Jesson LK, Kubien DS (2008) Photosynthesis and water-use efficiency: a comparison between invasive (exotic) and non-invasive (native) species. Austral Ecol 33:10–19

    Google Scholar 

  • McDowell SCL (2002) Photosynthetic characteristics of invasive and noninvasive species of Rubus (Rosaceae). Am J Bot 89(9):1431–1438

    PubMed  Google Scholar 

  • McNeil SD, Nuccio ML, Hanson AD (1999) Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol 120:945–949

    PubMed  CAS  Google Scholar 

  • Mediavilla S, Escudero A, Heilmeier H (2001) Internal leaf anatomy and photosynthetic resourse-use efficiency: interspecific and intraspecific comparisons. Tree Physiol 21:251–259

    PubMed  CAS  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19

    PubMed  CAS  Google Scholar 

  • Mohammadi Goltapeh E, Rezaee Danesh Y, Prasad R, Varma A (2008) Mycorrhizal fungi: what we know and what should we know? In: Varma A (ed) Mycorrhiza. Springer, Berlin, pp 3–27

    Google Scholar 

  • Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    PubMed  Google Scholar 

  • Moran JF, Becana M, Iturbe-Ormaetxe I, Frechilla S, Klucas RV, Aparicio-Tejo P (1994) Drought induces oxidative stress in pea plants. Planta 194:346–352

    CAS  Google Scholar 

  • Morison JI, Baker NR, Mullineaux PM, Davies WJ (2008) Improving water use in crop production. Philos T Roy Soc B 363:639–665

    CAS  Google Scholar 

  • Moutinho-Pereira JM, Correia CM, Gonçalves B, Bacelar E, Torres-Pereira JM (2004) Leaf gas-exchange and water relations of grapevines grown in three different conditions. Photosynthetica 42(1):81–86

    Google Scholar 

  • Moutinho-Pereira JM, Magalhães N, Gonçalves B, Bacelar E, Brito M, Correia C (2007) Gas exchange and water relations of three Vitis vinifera L. cultivars growing under Mediterranean climate. Photosynthetica 45(2):202–207

    CAS  Google Scholar 

  • Moutinho-Pereira JM, Magalhães N, de Torres Castro LF, Chaves MM, Torres-Pereira JM (2001) Physiological responses of grapevine leaves to Bordeaux mixture under light stress conditions. Vitis 40(3):117–121

    CAS  Google Scholar 

  • Murai-Hatano M, Kuwagata T, Sakurai J, Nonami H, Ahamed A, Nagasuga K, Matsunami T, Fukushi K, Maeshima M, Okada M (2008) Effect of low root temperature on hydraulic conductivity of rice plants and the possible role of aquaporins. Plant Cell Physiol 49:1294–1305

    PubMed  CAS  Google Scholar 

  • Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, Kumimoto RW, Maszle DR, Canales RD, Kroliwoski KA, Dotson SB, Gutterson N, Ratcliffe OJ, Heard JE (2007) Plant nuclear factor Y (NF–Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. P Nat Acad Sci U S A 104:16450–16455

    CAS  Google Scholar 

  • Noiraud N, Delrot S, Lemoine R (2000) The sucrose transporter of celery: identification and expression during salt stress. Plant Physiol 122:1447–1455

    PubMed  CAS  Google Scholar 

  • Northcote KH (1988) Soils and Australian viticulture. In: Coombe BG, Dry PR (eds) Viticulture, vol 1. Winetitles, Australia, pp 61–90

    Google Scholar 

  • Pang J, Yang J, Ward P, Siddique Kadambot HM, Lambers H, Tibbett M, Ryan M (2011) Contrasting responses to drought stress in herbaceous perennial legumes. Plant Soil 348(1–2):299–314

    CAS  Google Scholar 

  • Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen evolving photosystem II complex. Photosynth Res 44:243–252

    CAS  Google Scholar 

  • Passioura J (2002) Environmental biology and crop improvement. Funct Plant Biol 29:537–546

    Google Scholar 

  • Passioura J (2007) The drought environment: physical, biological and agricultural perspectives. J Exp Bot 58(2):113–117

    PubMed  CAS  Google Scholar 

  • Passioura JB (1983) Roots and drought resistance. Agr Water Manage 7:265–280

    Google Scholar 

  • Passioura JB (1982) Water in the soil-plant-atmosphere continuum. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Encyclopedia of plant physiology, vol 12 B. Springer, Berlin, pp 5–33

    Google Scholar 

  • Patakas A, Noitsakis B (1999) Mechanisms involved in diurnal changes of osmotic potential in grapevines under drought conditions. J Plant Physiol 154:767–774

    CAS  Google Scholar 

  • Peterson RL, Massicotte HB, Melville LH (2004) Mycorrhizas: anatomy and cell biology. NRC Research Press Ottawa/CABI Publishing, Wallingford

    Google Scholar 

  • Possigham JV (1992) Factors affecting growth, flowering and fruit ripening in Vitis vinifera. In: Proceedings of the IV international symposium on grapevine physiology, Torino (Italia)

    Google Scholar 

  • Rajendrakumar CSV, Reddy BDB, Reddy AR (1994) Proline-protein interactions: protection of structural and functional integrity of M4 lactate dehydrogenase. Biochem Biophy Res Commun 201:957–963

    CAS  Google Scholar 

  • Rathinasabapathi B, Fouad WM, Sigua CA (2001) β-Alanine betaine synthesis in the Plumbaginaceae: purification and characterization of a trifunctional, S-adenosyl-l-methionine-dependent N-methyltransferase from Limonium latifolium leaves. Plant Physiol 126:1241–1249

    PubMed  CAS  Google Scholar 

  • Reynolds MP, Ortiz-Monasterio JI, McNab A (2001) Application of physiology in wheat breeding. CIMMYT, Mexico

    Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    CAS  Google Scholar 

  • Richards RA, Condon AG, Rebetzke GJ (2001) Traits to improve yield in dry environments. In: Reynolds MP, Ortiz-Monasterio JI, McNab A (eds) Application of physiology in wheat breeding. CIMMYT, Mexico, pp 88–100

    Google Scholar 

  • Richardson A, Berlyn G (2002) Changes in foliar spectral reflectance and chlorophyll fluorescence of four temperate species following branch cutting. Tree Physiol 22:499–506

    PubMed  CAS  Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. P Nat Acad Sci U S A 104:19631–19636

    CAS  Google Scholar 

  • Roché BF, Roché CT, Chapman RC (1994) Impacts of grassland habitat on yellow starthistle (Centaurea solstitialis L.) invasion. Northwest Sci 68(2):86–96

    Google Scholar 

  • Rodrigues MA, Arrobas M, Bonifácio N (2005) Análise de terras em olivais tradicionais de sequeiro. O efeito da aplicação localizada de fertilizantes. Revista de Ciências Agrárias 28:167–176

    Google Scholar 

  • Rodrigues MA, Pavão F, Lopes JI, Gomes V, Arrobas M, Moutinho-Pereira JM, Ruivo S, Cabanas J, Correia CM (2011) Olive yields and tree nutritional status during a four-year period without nitrogen and boron fertilization. Communin Soil Sci Plant Anal 42:803–814

    CAS  Google Scholar 

  • Rodríguez-Pérez JR, Riaño D, Carlisle E, Ustin S, Smart DR (2007) Evaluation of hyperspectral reflectance indexes to detect grapevine water status in vineyards. Am J Enol Viticult 58:302–317

    Google Scholar 

  • Samuel D, Kumar TKS, Ganesh G, Jayaraman G, Yang P-W, Chang M-M, Trivedi VD, Wang S-L, Hwang K-C, Chang D-K, Yu C (2000) Proline inhibits aggregation during protein refolding. Protein Sci 9:344–352

    PubMed  CAS  Google Scholar 

  • Santos TP, Lopes CM, Rodrigues ML, Souza CR, Ricardo-da-Silva JM, Marococ JP, Pereira JS, Chaves MM (2007) Effects of deficit irrigation strategies on cluster microclimate for improving fruit composition of Moscatel field-grown grapevines. Sci Hortic 112(3):321–330

    Google Scholar 

  • Schulte PJ (1993) Tissue hydraulic properties and the water relations of desert shrubs. In: Smith JAC, Griffith H (eds) Water deficits, plant responses from cell to community. BIOS, Oxford, pp 177–192

    Google Scholar 

  • Schultz HR, Matthews MA (1988) Resistance to water transport in shoots of Vitis vinifera L. Plant Physiol 88:718–724

    PubMed  CAS  Google Scholar 

  • Schwabe W, Lionakis S (1996) Leaf attitude in olive in relation to drought resistance. J Hortic Sci 71:157–166

    Google Scholar 

  • Seibt U, Rajabi A, Griffiths H, Berry JA (2008) Carbon isotopes and water use efficiency: sense and sensitivity. Oecologia 155:441–454

    PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    PubMed  CAS  Google Scholar 

  • Shorter R, Lawn RJ, Hammer GL (1991) Improving genotypic adaptation in crops—a role for breeders, physiologists and modellers. Exp Agr 27:155–175

    Google Scholar 

  • Smart RE (1974) Photosynthesis by grapevine canopies. J Appl Ecol 11:997–1006

    Google Scholar 

  • Smirnoff N (1998) Plant resistance to environmental stress. Curr Opin Biotech 9:214–219

    PubMed  CAS  Google Scholar 

  • Sperry JS (2003) Evolution of water transport and xylem structure. Int J Plant Sci (Suppl.) 164:S115–S127

    Google Scholar 

  • Sun W, Van Montagu M, Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim Biophys Acta 1577:1–9

    PubMed  CAS  Google Scholar 

  • Taiz L, Zieger E (1998) Plant Physiology, 2nd edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Tinker NA (2002) Why quantitative geneticists should care about bioinformatics. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. CABI, Wallingford, pp 33–44

    Google Scholar 

  • Tognetti R, d’Andria R, Morelli G, Alvino A (2005) The effect of deficit irrigation on seasonal variations of plant water use in Olea europaea L. Plant Soil 273:139–155

    CAS  Google Scholar 

  • Tognetti R, Raschi A, Béres C, Fenyvesi A, Ridder HW (1996) Comparison of sap flow, cavitation and water status of Quercus petraea and Quercus cerris trees with special reference to computer tomography. Plant, Cell Environ 19:928–938

    Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics approaches to improve drought tolerance in crops. Trends Plant Sci 11(8):405–412

    PubMed  CAS  Google Scholar 

  • Tubiello FN, Lin G, Druitt JW, Marino BEV (1990) Ecosystem-level evapotranspiration and water-use efficiency in the desert biome of Biosphere 2. Ecol Eng 13:263–271

    Google Scholar 

  • Turner NC (1986) Crop water deficits: a decade of progress. Adv Agron 39:1–51

    Google Scholar 

  • Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant, Cell Environ 25:173–194

    CAS  Google Scholar 

  • Tyree MT, Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytol 119:345–360

    Google Scholar 

  • Tyree MT, Sperry S (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Physiol Mol Biol 40:19–38

    Google Scholar 

  • Van Huyssteen E, Van Zyl JL, Koen AP (1984) The effect of cover crop management on soil conditions and weed control in a Colombard vineyard in Oudtshoorn S Afr. J Enol Vitic 5:7–17

    Google Scholar 

  • Vijn I, Smeekens S (1999) Fructan: more than a reserve carbohydrate? Plant Physiol 120:351–360

    PubMed  CAS  Google Scholar 

  • Vilá M, Weiner J (2004) Are invasive plant species better competitors than native plant species?—evidence from pair-wise experiments. Oikos 105:229–238

    Google Scholar 

  • Wan XC, Zwiazek JJ (2001) Root water flow and leaf stomatal conductance in aspen (Populus tremuloides) seedlings treated with abscisic acid. Planta 213:741–747

    PubMed  CAS  Google Scholar 

  • Wehmeyer N, Hernandez LD, Finkelstein RR, Vierling E (1996) Synthesis of small heat-shock proteins is part of the development program of late seed maturation. Plant Physiol 112:747–757

    PubMed  CAS  Google Scholar 

  • Yuste J (2007) Efectos de la forma de conducción del viñedo en el régime hídrico y en la respuesta agronómica. Fundamentos, aplicación y consecuencias del riego en la vid, Editorial Agrícola Española S.A., Madrid

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunice L. V. A. Bacelar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bacelar, E.L.V.A. et al. (2012). Water Use Strategies of Plants Under Drought Conditions. In: Aroca, R. (eds) Plant Responses to Drought Stress. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32653-0_6

Download citation

Publish with us

Policies and ethics