Skip to main content

Use of Multiobjective Optimization for Data Clustering

  • Chapter
Unsupervised Classification

Abstract

This last chapter deals with some multiobjective clustering techniques based on symmetry. Three different clustering techniques are discussed. These use the multiobjective simulated annealing technique, AMOSA, as the underlying optimization strategy. The first one (MOPS) partitions the data into a pre-specified number of clusters, while the second one (VAMOSA) can automatically determine the number of clusters. These are multiobjective extensions of GAPS and VGAPS respectively. Results show that both MOPS and VAMOSA outperform GAPS and VGAPS respectively for most of the data sets. Finally a generalized clustering technique, named GenClustMOO, is described in this chapter, which is well suited to detect the appropriate partitioning from data sets having either point-symmetric or well-separated clusters. Here, multiple seed points are used to encode a particular cluster. Three cluster validity indices, namely one based on Euclidean distance, another based on the point symmetry distance, and the third based on a new definition of connectivity between the points, are optimized simultaneously. Concepts of relative neighborhood graph are utilized to compute the connectivity index. Extensive experimental results illustrating the effectiveness of the multiobjective clustering techniques over the single objective approaches are also presented for several artificial and real-life data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. UC Irvine Machine Learning Repository. http://www.ics.uci.edu/~mlearn/MLRepository.html

  2. Bandyopadhyay, S.: An automatic shape independent clustering technique. Pattern Recogn. 37(1), 33–45 (2004)

    Article  Google Scholar 

  3. Bandyopadhyay, S., Maulik, U.: Genetic clustering for automatic evolution of clusters and application to image classification. Pattern Recognit. 35(6), 1197–1208 (2002)

    Article  MATH  Google Scholar 

  4. Bandyopadhyay, S., Maulik, U., Mukhopadhyay, A.: Multiobjective genetic clustering for pixel classification in remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 45(5), 1506–1511 (2007)

    Article  Google Scholar 

  5. Bandyopadhyay, S., Saha, S.: A point symmetry based clustering technique for automatic evolution of clusters. IEEE Trans. Knowl. Data Eng. 20(11), 1–17 (2008)

    Article  Google Scholar 

  6. Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K.: A simulated annealing based multi-objective optimization algorithm: AMOSA. IEEE Trans. Evol. Comput. 12(3), 269–283 (2008)

    Article  Google Scholar 

  7. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)

    Book  MATH  Google Scholar 

  8. Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: Region-based selection in evolutionary multiobjective optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 283–290. Morgan Kaufmann, San Francisco (2001). citeseer.ist.psu.edu/corne01pesaii.html

    Google Scholar 

  9. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, England (2001)

    MATH  Google Scholar 

  10. Everitt, B.S.: Cluster Analysis, 3rd edn. Halsted, New York (1993)

    Google Scholar 

  11. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, New York (1989)

    MATH  Google Scholar 

  12. Handl, J., Knowles, J.: An evolutionary approach to multiobjective clustering. IEEE Trans. Evol. Comput. 11(1), 56–76 (2007)

    Article  Google Scholar 

  13. Jardine, N., Sibson, R.: Mathematical Taxonomy. Wiley, New York (1971)

    MATH  Google Scholar 

  14. Korkmaz, E.E., Du, J., Alhajj, R., Barker, K.: Combining advantages of new chromosome representation scheme and multi-objective genetic algorithms for better clustering. Intell. Data Anal. 10(2), 163–182 (2006)

    Google Scholar 

  15. Maulik, U., Bandyopadhyay, S.: Genetic algorithm based clustering technique. Pattern Recognit. 33(9), 1455–1465 (2000)

    Article  Google Scholar 

  16. Maulik, U., Bandyopadhyay, S.: Performance evaluation of some clustering algorithms and validity indices. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1650–1654 (2002)

    Article  Google Scholar 

  17. Pal, S.K., Mitra, S.: Fuzzy versions of Kohonen’s net and MLP-based classification: Performance evaluation for certain nonconvex decision regions. Inf. Sci. 76, 297–337 (1994)

    Article  MATH  Google Scholar 

  18. Park, Y.J., Song, M.S.: A genetic algorithm for clustering problems. In: Proc. 3rd Annual Conference on Genetic Programming, Paris, France, pp. 568–575 (1998)

    Google Scholar 

  19. Ripon, K.S.N., Tsang, C.H., Kwong, S., Ip, M.K.: Multi-objective evolutionary clustering using variable-length real jumping genes genetic algorithm. In: ICPR’06: Proceedings of the 18th International Conference on Pattern Recognition, pp. 1200–1203. IEEE Comput. Soc., Washington (2006)

    Google Scholar 

  20. Saha, S., Bandyopadhyay, S.: A new symmetry based multiobjective clustering technique for automatic evolution of clusters. Pattern Recognit. 43(3), 738–751 (2010)

    Article  MATH  Google Scholar 

  21. Saha, S., Bandyopadhyay, S.: A validity index based on connectivity. In: ICAPR, pp. 91–94. IEEE Comput. Soc., Los Alamitos (2009)

    Google Scholar 

  22. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters via the gap statistics. J. R. Stat. Soc. 63, 411–423 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Toussaint, G.T.: The relative neighborhood graph of a finite planar set. Pattern Recognit. 12, 261–268 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 13(8), 841–847 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bandyopadhyay, S., Saha, S. (2013). Use of Multiobjective Optimization for Data Clustering. In: Unsupervised Classification. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32451-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32451-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32450-5

  • Online ISBN: 978-3-642-32451-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics