Skip to main content

Dynamic and Thermal Interactions in Metal Cutting

  • Conference paper
Process Machine Interactions

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Abstract

This contribution presents a physical cutting process model based on the Discrete Element Method (DEM), which allows the simulation of dynamic and thermal interactions in metal cutting. Core component of the approach is the DEM model of a solid with elastic-plastic deformation modes, which is verified in standardized tensile and Charpy impact tests as well as other non-standardized tests. The model is enhanced such that the thermo-dynamics of a solid due to heat conduction can be included, which is also verified in different tests. The applicability to model-cutting processes is shown in the simulation of orthogonal cutting processes. The results of the simulation are compared to experimentally obtained results for both forces as well as temperatures. For verification purposes, an FEM model is made, which predicts both forces on the tool as well as temperatures

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tsai, L.-W.: Robot Analysis – The Mechanics of Serial and Parallel Manipulators. John Wiley & Sons, New York (1999)

    Google Scholar 

  2. Merlet, J.-P.: Parallel Robots. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  3. Preumont, A.: Mechatronics – Dynamics of Electromechanical and Piezoelectric Systems. Springer, Dordrecht (2006)

    MATH  Google Scholar 

  4. Heisel, U., Storchak, M., Stehle, T.: Einfluss der Umgebungstemperatur beim orthogonalen Zerspanen. wt Werkstattstechnik Online 100, 89–98 (2010) (in German)

    Google Scholar 

  5. Frohmüller, R., Knoche, H.-J., Lierath, F.: Aufbau und Erprobung von Temperaturmesseinrichtungen durch das IFQ im Rahmen des Schwerpunktprogramms Spanen metallischer Werkstoffe mit hoher Geschwindigkeit. Spanen metallischer Werkstoffe mit hohen Geschwindigkeiten Kolloquium des Schwerpunktprogramms der DFG, 108–115 (1999) (in German)

    Google Scholar 

  6. Körtvelyessy, L.V.: Thermoelement Praxis. Vulkan Verlag, Essen (1981) (in German)

    Google Scholar 

  7. Müller, B.: Thermische Analyse des Zerspanens metallischer Werkstoffe bei hohen Schnittgeschwindigkeiten. Dissertation, RWTH Aachen (2004) (in German)

    Google Scholar 

  8. Heisel, U., Storchak, M., Stehle, T., Korotkih, M.: Temperaturbestimmung in den Zerspanzonen. wt Werkstattstechnik Online 100, 365–370 (2010) (in German)

    Google Scholar 

  9. Heisel, U., Krivoruchko, D.V., Zaloha, V.A., Storchak, M.: Cause Analysis of Errors in FE Prediction of Orthogonal Cutting Performances. In: 10th CIRP International Workshop on Modeling of Machining Operations, pp. 141–148 (2007)

    Google Scholar 

  10. Heisel, U., Kryvoruchko, D.V., Zaloha, V.A., Storchak, M., Emelyanenko, S., Selivonenko, S.N.: Finite Element Analysis of Cutting Force Dynamics. In: Proceedings of the 11th CIRP Conference on Modeling of Machining Operations, September 16-18, pp. 163–170 (2008)

    Google Scholar 

  11. Fleissner, F.: Parallel Object Oriented Simulation with Lagrangian Particle Methods. Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart, Bd. 16. Shaker Verlag, Aachen (2010)

    Google Scholar 

  12. Geradin, M., Rixen, D.: Mechanical Vibrations. John Wiley & Sons, Chichester (1998)

    Google Scholar 

  13. Lankarani, H.M., Nikravesh, P.E.: A Contact Force Model with Hysteresis Damping for Impact Analysis of Multibody Systems. Journal of Mechanical Design 112, 369–376 (1990)

    Article  Google Scholar 

  14. Liu, K., Gao, L., Tanimura, S.: Application of Discrete Element Method in Impact Problems. JSME International Journal, Series A 47, 138–145 (2004)

    Article  Google Scholar 

  15. Fleissner, F., Gaugele, T., Eberhard, P.: Application of the Discrete Element Method in Mechanical Engineering. Multibody System Dynamics 18, 81–94 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gaugele, T., Fleissner, F., Eberhard, P.: Simulation of Material Tests using Meshfree Langrangian Particle Methods. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 222(K4), 327–338 (2008)

    Google Scholar 

  17. DIN10045, Kerbschlagbiegeversuch nach Charpy. Deutsches Institut für Normung e.V., Berlin (1991)

    Google Scholar 

  18. Gaugele, T., Eberhard, P., Storchak, M., Heisel, U.: A Discrete Material Model used in a Co-simulated Charpy Impact Test and for Heat Transfer. In: Proceedings of the 1. International Conference on Process Machine Interactions, pp. 361–369 (2008)

    Google Scholar 

  19. Tychonoff, A., Samarski, A.: Differentialgleichungen der mathematischen Physik. Deutscher Verlag der Wissenschaften, Berlin (1959) (in German)

    Google Scholar 

  20. Jaspers, S., Dautzenberg, J.: Material Behavior in Metal Cutting: Strains, Strain Rates, and Temperatures in Metal Cutting. Journal of Materials Processing Technology 121, 123–135 (2002)

    Article  Google Scholar 

  21. Gaugele, T.: Application of the Discrete Element Method to Model Ductile, Heat Conductive Materials. Dissertation, University of Stuttgart (2011) (submitted)

    Google Scholar 

  22. Eberhard, P., Gaugele, T.: Quasi-static and dynamic properties of separable continua based on Lagrangian Particle Methods. In: Proceedings of the International Conference on Particle-Based Methods, Fundamentals and Applications (Particles 2009), pp. 398–401 (2009)

    Google Scholar 

  23. Gaugele, T., Eberhard, P., Fleissner, F.: Particle Methods Used to Model Cutting Processes Including Heat Conduction. In: Proceedings of the International Conference on Particle-Based Methods, Fundamentals and Applications (Particles 2009), pp. 142–145 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eberhard, P., Heisel, U., Storchak, M., Gaugele, T. (2013). Dynamic and Thermal Interactions in Metal Cutting. In: Denkena, B., Hollmann, F. (eds) Process Machine Interactions. Lecture Notes in Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32448-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32448-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32447-5

  • Online ISBN: 978-3-642-32448-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics