Skip to main content

Numerical Computation Methods for Modeling the Phenomenon of Tool Extraction

  • Conference paper
Process Machine Interactions

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Abstract

Tool extraction is a phenomenon, where the end mill slips out of the shrink-fit chuck in axial direction during the cutting process. This leads to severe damage of the workpiece, the tool and in some cases even the machine spindle. So far, this is an unexplained problem with no repeatability. In this article, experimental investigations such as scanning electron microscopy (SEM) and residual stress measurements on the clamping surface of shrink-fit chucks affected by tool extraction are presented. Furthermore, results from experiments on a special testrig and a mathematical approach, which aims at the prediction of failures due to Process Machine Interaction, are described. Within the mathematical approach, a finite element model of the tool and the tool holder is linked with a cutting force simulation. The dynamic behavior of the spindle is determined by frequency response function measurements. From these measurements, a modal model is deduced and coupled with the finite element model of the tool holder. The presented mathematical model is used to compute the resulting stresses in the interface of those components due to process forces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schulz, H., Rondé, U.: Werkzeuge schrumpfspannen. Werkstatt und Betrieb 127(11), 873–875 (1994)

    Google Scholar 

  2. Eastman, M.: Shrink-Fit Toolholding, Cutting Tool Engineering 49(3) (1997)

    Google Scholar 

  3. Deutsches Institut für Normung e.V., Pressverbände - Berechnungsgrundlagen und Gestaltungsregeln. Beuth Verlag, Berlin (February 2001) 17.040.10; 21.120.10/

    Google Scholar 

  4. Rondé, U.: Untersuchung von Systemen zum Spannen von Zylinderschaftwerkzeugen unter besonderer Berücksichtigung ihrer Eignung für die Hochgeschwindigkeitsbearbeitung, Dissertation, Darmstadt (1994)

    Google Scholar 

  5. Denkena, B., Stephan, E.P., Maischak, M., Heinisch, D., Andres, M.: Numerical computation methods for process-oriented structures in metal chipping. In: Denkena, B. (ed.) 1st International Conference on Process Machine Interactions, vol. 1, pp. 247–256. PZH Produktionstechn, Zentrum (2008)

    Google Scholar 

  6. Denkena, B., Stephan, E.P., Maischak, M., Heinisch, D., Andres, M., Krüger, M.: Investigations on Dynamic Tool, Structure and Process Interaction. In: Altintas, Y. (ed.) 2nd International Conference on Process Machine Interactions, Vancouver (2010)

    Google Scholar 

  7. Fladerer, F.: Haltemomente sind beim Schrumpfen ein Maß für die Produktivität. Maschinenmarkt 31(32), 28–29 (2007)

    Google Scholar 

  8. Johnson, C.: Numerical solution of partial differential equations by the finite element method. Dover Publ., Mineola (2009)

    MATH  Google Scholar 

  9. Li, X.D., Wiberg, N.E.: Structural dynamic analysis by a time-discontinuous Galerkin finite element method. Internat. J. Numer. Methods Engrg. 39(12), 2131–2152 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duarte, M.L.M.: Experimentally derived structural models for use in further dynamic analysis, Dissertation, University of London (1996)

    Google Scholar 

  11. Ewins, D.J.: Modal testing, Theory, practice and application. Research Studies Press, Baldock (2000)

    Google Scholar 

  12. Allen, M.S., Mayes, R.L., Bergman, E.J.: Experimental modal substructuring to couple and uncouple substructures with flexible fixtures and multi-point connections. Journal of Sound and Vibration 329(23), 4891–4906 (2010)

    Article  Google Scholar 

  13. Altintas, Y., Weck, M.: Chatter Stability of Metal Cutting and Grinding. CIRP Annals - Manufacturing Technology 53(2), 619–642 (2004)

    Article  Google Scholar 

  14. Park, S.S., Altintas, Y., Movahhedy, M.: Receptance coupling for end mills. International Journal of Machine Tools and Manufacture 43(9), 889–896 (2003)

    Article  Google Scholar 

  15. Filiz, S., Cheng, C.H., Powell, K.B., Schmitz, T.L., Ozdoganlar, O.B.: An improved tool-holder model for RCSA tool-point frequency response prediction. Precision Engineering 33(1), 26–36 (2009)

    Article  Google Scholar 

  16. Schmitz, T.L.: Torsional and axial frequency response prediction by RCSA. Precision Engineering 34(2), 345–356 (2010)

    Article  MathSciNet  Google Scholar 

  17. Özsahin, O., Ertürk, A., Özgüven, H.N., Budak, E.: A closed-form approach for identification of dynamical contact parameters in spindle-holder-tool assemblies. International Journal of Machine Tools and Manufacture 49(1), 25–35 (2009)

    Article  Google Scholar 

  18. Ertürk, A., Özgüven, H.N., Budak, E.: Analytical modeling of spindle-tool dynamics on machine tools using Timoshenko beam model and receptance coupling for the prediction of tool point FRF. International Journal of Machine Tools and Manufacture 46(15), 1901–1912 (2006)

    Article  Google Scholar 

  19. Ahmadian, H., Nourmohammadi, M.: Tool point dynamics prediction by a three-component model utilizing distributed joint interfaces. International Journal of Machine Tools and Manufacture 50(11), 998–1005 (2010)

    Article  Google Scholar 

  20. Kolar, P., Sulitka, M., Janota, M.: Simulation of dynamic properties of a spindle and tool system coupled with a machine tool frame. The International Journal of Advanced Manufacturing Technology, 1–10 (2010)

    Google Scholar 

  21. Clausen, M.: Zerspankraftprognose und-simulation für Dreh-und Fräsprozesse, Hannover (2005)

    Google Scholar 

  22. Denkena, B., Tracht, K., Schmidt, C.: A flexible force model for predicting cutting forces in end milling. Production Engineering – Research and Development 13(2), 15–20 (2006)

    Google Scholar 

  23. Denkena, B., Schmidt, C.: Experimental Investigation and Simulation of Machining Thin-Walled Workpieces. Production Engineering – Research and Development 1(4), 343–350 (2007)

    Article  Google Scholar 

  24. Altintas, Y.: Manufacturing automation. Metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge Univ. Press, Cambridge (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Denkena, B., Stephan, E.P., Maischak, M., Heinisch, D., Andres, M. (2013). Numerical Computation Methods for Modeling the Phenomenon of Tool Extraction. In: Denkena, B., Hollmann, F. (eds) Process Machine Interactions. Lecture Notes in Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32448-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32448-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32447-5

  • Online ISBN: 978-3-642-32448-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics