Skip to main content

The Role of the Basal Ganglia in Discovering Novel Actions

  • Chapter
  • First Online:
Intrinsically Motivated Learning in Natural and Artificial Systems

Abstract

Our interest is in the neural circuitry which supports the discovery and encoding of novel actions. We discuss the significant existing literature which identifies the basal ganglia, a complex of subcortical nuclei, as important in both the selection of actions and in reinforcement learning. We discuss the complementarity of these problems of action selection and action learning. Two basic mechanisms of biasing action selection are identified: (a) adjusting the relative strengths of competing inputs and (b) adjusting the relative sensitivity of the receiver of reinforced inputs. We discuss the particular importance of the phasic dopamine signal in the basal ganglia and its proposed role in conveying a reward prediction error. Temporal constraints of this signal limit the information it can convey to immediately surprising sensory events, thus—we argue—making it inappropriate to convey information regarding the economic value of actions (as proposed by the reward prediction error hypothesis). Rather, we suggest this signal is ideal to support the identification of novel actions and their encoding via the biasing of future action selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander, G., DeLong, M., Strick, P.: Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381 (1986)

    Google Scholar 

  2. Arbuthnott, G.W., Wickens, J.: Space, time and dopamine. Trends Neurosci. 30(2), 62–69 (2007)

    Google Scholar 

  3. BarGad, I., Morris, G., Bergman, H.: Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog. Neurobiol. 71(6), 439–473 (2003)

    Google Scholar 

  4. Bayer, H.M., Glimcher, P.W.: Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47(1), 129–141 (2005)

    Google Scholar 

  5. Berridge, K.C.: The debate over dopamine’s role in reward: The case for incentive salience. Psychopharmacology 191(3), 391–431 (2007)

    Google Scholar 

  6. Bickford, M., Hall, W.: Collateral projections of predorsal bundle cells of the superior colliculus in the rat. J. Comp. Neurol. 283, 86–106 (1989)

    Google Scholar 

  7. Black, J., Belluzzi, J.D., Stein, L.: Reinforcement delay of one second severely impairs acquisition of brain self-stimulation. Brain Res. 359(1–2), 113–119 (1985)

    Google Scholar 

  8. Boehnke, S.E., Munoz, D.P.: On the importance of the transient visual response in the superior colliculus. Curr. Opin. Neurobiol. 18(6), 544–551 (2008)

    Google Scholar 

  9. Chevalier, G., Deniau, J.: Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci. 13(7), 277–280 (1990)

    Google Scholar 

  10. Coizet, V., Dommett, E.J., Redgrave, P., Overton, P.G.: Nociceptive responses of midbrain dopaminergic neurones are modulated by the superior colliculus in the rat. Neuroscience 139(4), 1479–1493 (2006)

    Google Scholar 

  11. Coizet, V., Graham, J.H., Moss, J., Bolam, J.P., Savasta, M., McHaffie, J.G., Redgrave, P., Overton, P.G.: Short-latency visual input to the subthalamic nucleus is provided by the midbrain superior colliculus. J. Neurosci. 29(17), 5701–5709 (2009)

    Google Scholar 

  12. Coizet, V., Overton, P.G., Redgrave, P.: Collateralization of the tectonigral projection with other major output pathways of superior colliculus in the rat. J. Comp. Neurol. 500(6), 1034–1049 (2007)

    Google Scholar 

  13. Comoli, E., Coizet, V., Boyes, J., Bolam, J.P., Canteras, N.S., Quirk, R.H., Overton, P.G., Redgrave, P.: A direct projection from superior colliculus to substantia nigra for detecting salient visual events. Nat. Neurosci. 6(9), 974–980 (2003)

    Google Scholar 

  14. Corbit, L., Balleine, B.: The role of prelimbic cortex in instrumental conditioning. Behav. Brain Res. 146(1–2), 145–157 (2003)

    Google Scholar 

  15. Crutcher, M.D., DeLong, M.R.: Single cell studies of the primate putamen. II. Relations to direction of movement and pattern of muscular activity. Exp. Brain Res. 53(2), 244–258 (1984)

    Google Scholar 

  16. Dayan, P., Balleine, B.: Reward, motivation, and reinforcement learning. Neuron 36(2), 285–298 (2002)

    Google Scholar 

  17. Dean, P., Redgrave, P., Westby, G.: Event or emergency? two response systems in the mammalian superior colliculus. Trends Neurosci. 12(4), 137–147 (1989)

    Google Scholar 

  18. Dickinson, A.: The 28th bartlett memorial lecture causal learning: An associative analysis. Quart. J. Exp. Psych. B Comp. Phys. P 54(1), 3–25 (2001)

    Google Scholar 

  19. Ding, L., Hikosaka, O.: Comparison of reward modulation in the frontal eye field and caudate of the macaque. J. Neurosci. 26(25), 6695–6703 (2006)

    Google Scholar 

  20. Dommett, E., Coizet, V., Blaha, C.D., Martindale, J., Lefebvre, V., Walton, N., Mayhew, J.E., Overton, P.G., Redgrave, P.: How visual stimuli activate dopaminergic neurons at short latency. Science 307(5714), 1476–1479 (2005)

    Google Scholar 

  21. Elsner, B., Hommel, B.: Contiguity and contingency in action-effect learning. Psychol. Res. 68(2–3), 138–154 (2004)

    Google Scholar 

  22. Everitt, B.J., Robbins, T.W.: Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nat. Neurosci. 8(11), 1481–1489 (2005)

    Google Scholar 

  23. Fiorillo, C., Tobler, P., Schultz, W.: Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299(5614), 1898–1902 (2003)

    Google Scholar 

  24. Floresco, S., West, A., Ash, B., Moore, H., Grace, A.: Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat. Neurosci. 6(9), 968–973 (2003)

    Google Scholar 

  25. Freeman, A.S., Meltzer, L.T., Bunney, B.S.: Firing properties of substantia nigra dopaminergic neurons in freely moving rats. Life Sci. 36(20), 1983–1994 (1985)

    Google Scholar 

  26. Gerfen, C., Wilson, C.: The basal ganglia. In: Swanson, L., Bjorklund, A., Hokfelt, T. (eds.) Handbook of Chemical Neuroanatomy, vol 12: Integrated Systems of the CNS, Part III., pp. 371–468. Elsevier, Amsterdam (1996)

    Google Scholar 

  27. Grace, A.A.: The tonic/phasic model of dopamine system regulation: Its relevance for understanding how stimulant abuse can alter basal ganglia function. Drug Alcohol Depend. 37, 111–129 (1995)

    Google Scholar 

  28. Grantyn, R.: Gaze control through superior colliculus: Structure and function. In: Buttner-Ennever, J. (ed.) Neuroanatomy of the Oculomotor System, pp. 273–333. Elsevier, Amsterdam (1988)

    Google Scholar 

  29. Greengard, P., Allen, P.B., Nairn, A.C.: Beyond the dopamine receptor: The darpp-32/protein phosphatase-1 cascade. Neuron 23(3), 435–447 (1999)

    Google Scholar 

  30. Grillner, S., Helligren, J., Ménard, A., Saitoh, K., Wikström, M.A.: Mechanisms for selection of basic motor programs - roles for the striatum and pallidum. Trends Neurosci. 28(7), 364–370 (2005)

    Google Scholar 

  31. Guarraci, F., Kapp, B.: An electrophysiological characterization of ventral tegmental area dopaminergic neurons during differential pavlovian fear conditioning in the awake rabbit. Behav. Brain Res. 99(2), 169–179 (1999)

    Google Scholar 

  32. Gurney, K., Lepora, N., Shah, A., Koene, A., Redgrave, P.: Action discovery and intrinsic motivation: A biologically constrained formalisation. In: Baldassarre, G., Mirolli, M. (eds.) Intrinsically Motivated Learning in Natural and Artificial Systems, pp. 151–181. Springer, Berlin (2012)

    Google Scholar 

  33. Gurney, K., Prescott, T., Redgrave, P.: A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol. Cybern. 84(6), 401–410 (2001a)

    MATH  Google Scholar 

  34. Gurney, K., Prescott, T., Redgrave, P.: A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biol. Cybern. 84(6), 411–423 (2001b)

    MATH  Google Scholar 

  35. Heien, M., Khan, A.S., Ariansen, J.L., Cheer, J.F., Phillips, P.E.M., Wassum, K.M., Wightman, R.M.: Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proc. Natl. Acad. Sci. U. S. A. 102(29), 10023–10028 (2005)

    Google Scholar 

  36. Hikosaka, O.: GABAergic output of the basal ganglia. Prog. Brain Res. 160, 209–226 (2007)

    Google Scholar 

  37. Hikosaka, O., Sakamoto, M., Usui, S.: Functional properties of monkey caudate neurons III. Activities related to expectation of target and reward. J. Neurophysiol. 61(4), 814–832 (1989)

    Google Scholar 

  38. Hikosaka, O., Wurtz, R.: Visual and oculomotor function of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. J. Neurophysiol. 49(5), 1230–1253 (1983)

    Google Scholar 

  39. Horn, G., Hill, R.M.: Effect of removing the neocortex on the response to repeated sensory stimulation of neurones in the mid-brain. Nature 211, 754–755 (1966)

    Google Scholar 

  40. Horvitz, J.: Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96(4), 651–656 (2000)

    Google Scholar 

  41. Horvitz, J., Stewart, T., Jacobs, B.: Burst activity of ventral tegmental dopamine neurons is elicited by sensory stimuli in the awake cat. Brain Res. 759(2), 251–258 (1997)

    Google Scholar 

  42. Houk, J.C.: Agents of the mind. Biol. Cybern. 92(6), 427–437 (2005)

    MATH  Google Scholar 

  43. Humphries, M.D., Stewart, R.D., Gurney, K.N.: A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. J. Neurosci. 26(50), 12921–12942 (2006)

    Google Scholar 

  44. Ikeda, T., Hikosaka, O.: Reward-dependent gain and bias of visual responses in primate superior colliculus. Neuron 39(4), 693–700 (2003)

    Google Scholar 

  45. Izhikevich, E.M.: Solving the Distal Reward Problem through linkage of STDP and dopamine signaling. Cereb. Cortex 17(10), 2443–2452 (2007)

    Google Scholar 

  46. Jay, M., Sparks, D.: Sensorimotor integration in the primate superior colliculus. I. Motor convergence. J. Neurophysiol. 57(1), 22–34 (1987)

    Google Scholar 

  47. Klop, E.M., Mouton, L.J., Hulsebosch, R., Boers, J., Holstege, G.: In cat four times as many lamina I neurons project to the parabrachial nuclei and twice as many to the periaqueductal gray as to the thalamus. Neuroscience 134(1), 189–197 (2005)

    Google Scholar 

  48. Kobayashi, S., Lauwereyns, J., Koizumi, M., Sakagami, M., Hikosaka, O.: Influence of reward expectation on visuospatial processing in macaque lateral prefrontal cortex. J. Neurophysiol. 87(3), 1488–1498 (2002)

    Google Scholar 

  49. Kobayashi, S., Nomoto, K., Watanabe, M., Hikosaka, O., Schultz, W., Sakagami, M.: Influences of rewarding and aversive outcomes on activity in macaque lateral prefrontal cortex. Neuron 51(6), 861–870 (2006)

    Google Scholar 

  50. Lacey, C.J., Bolam, J.P., Magill, P.J.: Novel and distinct operational principles of intralaminar thalamic neurons and their striatal projections. J. Neurosci. 27(16), 4374–4384 (2007)

    Google Scholar 

  51. Lévesque, M., Charara, A., Gagnon, S., Parent, A., Deschênes, M.: Corticostriatal projections from layer V cells in rat are collaterals of long-range corticofugal axons. Brain Res. 709(2), 311–315 (1996)

    Google Scholar 

  52. Lindvall, O., Björklund, A.: The organization of the ascending catcholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluoresence method. Acta Physiol. Scand. Suppl. 412, 1–48 (1974)

    Google Scholar 

  53. Ljungberg, T., Apicella, P., Schultz, W.: Responses of monkey dopamine neurons during learning of behavioural reactions. J. Neurophysiol. 67(1), 145–163 (1992)

    Google Scholar 

  54. Matsumoto, M., Hikosaka, O.: Representation of negative motivational value in the primate lateral habenula. Nat. Neurosci. 12(1), 77–84 (2009)

    Google Scholar 

  55. McHaffie, J.G., Stanford, T.R., Stein, B.E., Coizet, V., Redgrave, P.: Subcortical loops through the basal ganglia. Trends Neurosci. 28(8), 401–407 (2005)

    Google Scholar 

  56. Mink, J.: The basal ganglia: Focused selection and inhibition of competing motor programs. Prog. Neurobiol. 50(4), 381–425 (1996)

    Google Scholar 

  57. Montague, P.R., Dayan, P., Sejnowski, T.J.: A framework for mesencephalic dopamine systems based on predictive hebbian learning. J. Neurosci. 16(5), 1936–1947 (1996)

    Google Scholar 

  58. Montague, P.R., Hyman, S.E., Cohen, J.D.: Computational roles for dopamine in behavioural control. Nature 431(7010), 760–767 (2004)

    Google Scholar 

  59. Morris, G., Arkadir, D., Nevet, A., Vaadia, E., Bergman, H.: Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron 43(1), 133–143 (2004)

    Google Scholar 

  60. Nakahara, H., Itoh, H., Kawagoe, R., Takikawa, Y., Hikosaka, O.: Dopamine neurons can represent context-dependent prediction error. Neuron 41(2), 269–280 (2004)

    Google Scholar 

  61. O’Doherty, J., Dayan, P., Friston, K., Critchley, H., Dolan, R.: Temporal difference models and reward-related learning in the human brain. Neuron 38(2), 329–337 (2003)

    Google Scholar 

  62. Omelchenko, N., Sesack, S.R.: Glutamate synaptic inputs to ventral tegmental area neurons in the rat derive primarily from subcortical sources. Neuroscience 146(3), 1259–1274 (2007)

    Google Scholar 

  63. Overton, P.G., Coizet, V., Dommett, E., Redgrave, P.: The parabrachial nucleus is a source of short latency nociceptive input to midbrain dopaminergic neurones in rat. Program No. 301.5, Neuroscience 2005 Abstracts. Society for Neuroscience, Washington. Online (2005)

    Google Scholar 

  64. Padoa-Schioppa, C., Assad, J.A.: Neurons in the orbitofrontal cortex encode economic value. Nature 441(7090), 223–226 (2006)

    Google Scholar 

  65. Pan, W.X., Schmidt, R., Wickens, J.R, Hyland, B.I.: Dopamine cells respond to predicted events during classical conditioning: Evidence for eligibility traces in the reward-learning network. J. Neurosci. 25(26), 6235–6242 (2005)

    Google Scholar 

  66. Pleger, B., Blankenburg, F., Ruff, C.C., Driver, J., Dolan, R.J.: Reward facilitates tactile judgments and modulates hemodynamic responses in human primary somatosensory cortex. J. Neurosci. 28(33), 8161–8168 (2008)

    Google Scholar 

  67. Potts, G.F., Martin, L.E., Burton, P., Montague, P.R.: When things are better or worse than expected: The medial frontal cortex and the allocation of processing resources. J. Cogn. Neurosci. 18(7), 1112–1119 (2006)

    Google Scholar 

  68. Prescott, T.J., Montes González, F.M., Gurney, K., Humphries, M.D., Redgrave, P.: A robot model of the basal ganglia: Behavior and intrinsic processing. Neural Netw. 19(1), 31–61 (2006)

    MATH  Google Scholar 

  69. Prescott, T.J., Redgrave, P., Gurney, K.: Layered control architectures in robots and vertebrates. Adap. Behav. 7(1), 99–127 (1999)

    Google Scholar 

  70. Redgrave, P.: Basal ganglia. Scholarpedia 2(6), 1825 (2007)

    Google Scholar 

  71. Redgrave, P., Gurney, K.: The short-latency dopamine signal: A role in discovering novel actions? Nat. Rev. Neurosci. 7(12), 967–975 (2006)

    Google Scholar 

  72. Redgrave, P., Gurney, K., Reynolds, J.: What is reinforced by phasic dopamine signals? Brain Res. Rev. 58(2), 322–339 (2008)

    Google Scholar 

  73. Redgrave, P., Prescott, T., Gurney, K.: The basal ganglia: A vertebrate solution to the selection problem? Neuroscience 89(4), 1009–1023 (1999a)

    Google Scholar 

  74. Redgrave, P., Prescott, T., Gurney, K.: Is the short latency dopamine response too short to signal reward error? Trends Neurosci. 22(4), 146–151 (1999b)

    Google Scholar 

  75. Reiner, A., Jiao, Y., Del Mar, N., Laverghetta, A., Lei, W.: Differential morphology of pyramidal tract-type and intratelencephalically projecting-type corticostriatal neurons and their intrastriatal terminals in rats. J. Comp. Neurol. 457, 420–440 (2003)

    Google Scholar 

  76. Reynolds, J.N., Wickens, J.R.: Dopamine-dependent plasticity of corticostriatal synapses. Neural Netw. 15(4–6), 507–521 (2002)

    Google Scholar 

  77. Robbins, T., Sahakian, B.: Behavioral and neurochemical determinants of drug-induced stereotypy. In: Rose, F. (ed.) Metabolic Disorders of the Nervous System, pp. 244–291. Pitman Pr., London (1981)

    Google Scholar 

  78. Roitman, M., Stuber, G., Phillips, P., Wightman, R., Carelli, R.: Dopamine operates as a subsecond modulator of food seeking. J. Neurosci. 24(6), 1265–1271 (2004)

    Google Scholar 

  79. Rolls, E.T.: The orbitofrontal cortex and reward. Cereb. Cortex 10(3), 284–294 (2000)

    Google Scholar 

  80. Salamone, J., Correa, M.: Motivational views of reinforcement: Implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav. Brain Res. 137(1–2), 3–25 (2002)

    Google Scholar 

  81. Satoh, T., Nakai, S., Sato, T., Kimura, M.: Correlated coding of motivation and outcome of decision by dopamine neurons. J. Neurosci. 23(30), 9913–9923 (2003)

    Google Scholar 

  82. Schultz, W.: Predictive reward signal of dopamine neurons. J. Neurophysiol. 80(1), 1–27 (1998)

    Google Scholar 

  83. Schultz, W.: Multiple reward signals in the brain. Nat. Rev. Neurosci. 1(3), 199–207 (2000)

    Google Scholar 

  84. Schultz, W.: Behavioral theories and the neurophysiology of reward. Annu. Rev. Psychol. 57, 87–115 (2006)

    Google Scholar 

  85. Schultz, W.: Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30, 259–288 (2007)

    Google Scholar 

  86. Schultz, W., Dayan, P., Montague, P.: A neural substrate of prediction and reward. Science 275(5306), 1593–1599 (1997)

    Google Scholar 

  87. Schulz, J., Redgrave, P., Clements, K., Reynolds, J.: Short latency activation of striatal spiny neurons via subcortical visual pathways. Program No. 180.2, 2008 Neuroscience Meeting Planner. Society for Neuroscience, Washington. Online (2008)

    Google Scholar 

  88. Singh, S., Barto, A., Chentanez, N.: Intrinsically motivated reinforcement learning. In: Saul, K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 17, pp. 1281–1288 (2005)

    Google Scholar 

  89. Smith, Y., Raju, D.V., Pare, J.F., Sidibe, M.: The thalamostriatal system: A highly specific network of the basal ganglia circuitry. Trends Neurosci. 27(9), 520–527 (2004)

    Google Scholar 

  90. Snaith, S., Holland, O.: An investigation of two mediation strategies suitable for behavioural control in animals and animats. In: Meyer, J.-A., Wilson, S. (eds.) From Animals to Animats: Proceedings of the First International Conference on the Simulation of Adaptive Behaviour, pp. 255–262. MIT, Cambridge (1990)

    Google Scholar 

  91. Sparks, D.: Translation of sensory signals into commands for control of saccadic eye movements: Role of the primate superior colliculus. Physiol. Rev. 66(1), 118–171 (1986)

    Google Scholar 

  92. Sprague, J.M., Marchiafava, P.L., Rixxolatti, G.: Unit responses to visual stimuli in the superior colliculus of the unanesthetized, mid-pontine cat. Arch. Ital. Biol. 106(3), 169–193 (1968)

    Google Scholar 

  93. Stafford, T., Walton, T., Hetherington, L., Thirkettle, M., Gurney, K., Redgrave, P.: A novel behavioural task for researching intrinsic motivation. In: Baldassarre, G., Mirolli, M. (eds.) Intrinsically Motivated Learning in Natural and Artificial Systems, pp. 395–410. Springer, Berlin (2012)

    Google Scholar 

  94. Stein, B., Meredith, M.: The Merging of the Senses. MIT, Cambridge (1993)

    Google Scholar 

  95. Stoerig, P.: Blindsight, conscious vision, and the role of primary visual cortex. Prog. Brain Res. 155B, 217–234 (2006)

    Google Scholar 

  96. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT, Cambridge (1998)

    MATH  Google Scholar 

  97. Thorndike, E.: Animal Intelligence. Macmillan, New York (1911)

    Google Scholar 

  98. Thorpe, S., Fabre-Thorpe, M.: Seeking categories in the brain. Science 291(5502), 260–263 (2001)

    Google Scholar 

  99. Ungless, M.: Dopamine: The salient issue. Trends Neurosci. 27(12), 702–706 (2004)

    Google Scholar 

  100. Ungless, M., Magill, P., Bolam, J.: Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303(5666), 2040–2042 (2004)

    Google Scholar 

  101. Venton, B.J., Wightman, R.M.: Pharmacologically induced, subsecond dopamine transients in the caudate-putamen of the anesthetized rat. Synapse 61(1), 37–39 (2007)

    Google Scholar 

  102. Watanabe, M., Hikosaka, K., Sakagami, M., Shirakawa, S.: Coding and monitoring of motivational context in the primate prefrontal cortex. J. Neurosci. 22(6), 2391–2400 (2002)

    Google Scholar 

  103. Wickens, J.: A theory of the striatum. Pergamon, Oxford (1993)

    Google Scholar 

  104. Wickens, J., Reynolds, J., Hyland, B.: Neural mechanisms of reward-related motor learning. Curr. Opin. Neurobiol. 13(6), 685–690 (2003)

    Google Scholar 

  105. Wise, R.: Dopamine, learning and motivation. Nat. Rev. Neurosci. 5(6), 483–494 (2004)

    Google Scholar 

  106. Wurtz, R., Albano, J.: Visual-motor function of the primate superior colliculus. Annu. Rev. Neurosci. 3, 189–226 (1980)

    Google Scholar 

Download references

Acknowledgements

Written while the authors were in receipt of research funding from The Wellcome Trust, BBSRC and EPSRC, this research has also received funds from the European Commission 7th Framework Programme (FP7/2007-2013), “Challenge 2—Cognitive Systems, Interaction, Robotics”, Grant Agreement No. ICT-IP-231722 and Project “IM-CLeVeR—Intrinsically Motivated Cumulative Learning Versatile Robots”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Redgrave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Redgrave, P., Gurney, K., Stafford, T., Thirkettle, M., Lewis, J. (2013). The Role of the Basal Ganglia in Discovering Novel Actions. In: Baldassarre, G., Mirolli, M. (eds) Intrinsically Motivated Learning in Natural and Artificial Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32375-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32375-1_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32374-4

  • Online ISBN: 978-3-642-32375-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics