Skip to main content

The Hippocampal-VTA Loop: The Role of Novelty and Motivation in Controlling the Entry of Information into Long-Term Memory

  • Chapter
  • First Online:
Intrinsically Motivated Learning in Natural and Artificial Systems

Abstract

The role of dopamine has been strongly implicated in reward processes, but recent work shows an additional role as a signal that promotes the stable incorporation of novel information into long-term hippocampal memory. Indeed, dopamine neurons, in addition to being activated by reward, can be activated by novelty in the absence of reward. The computation of novelty is thought to occur in the hippocampus and is carried to the dopamine cells of the VTA through a polysynaptic pathway. Although a picture of novelty-dependent processes in the VTA and hippocampus is beginning to emerge, many aspects of the process remain unclear. Here, we will consider several issues: (1) What is relationship of novelty signals coming to the VTA from the superior colliculus, as compared to those that come from the hippocampus? (2) Can dopamine released by a reward enhance the learning of novel information? (3) Is there an interaction between motivational signals and hippocampal novelty signals? (4) What are the properties of the axons that generate dopamine release in the hippocampus? We close with a discussion of some of the outstanding open issues in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adcock, R., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., Gabrieli, J.: Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron 50, 507–517 (2006)

    Google Scholar 

  • Arsenault, M., Parent, A., Seguela, P., Descarries, L.: Distribution and morphological characteristics of dopamine-immunoreactive neurons in the midbrain of the squirrel monkey (saimiri sciureus). J. Comp. Neurol. 267(4), 489–506 (1988)

    Google Scholar 

  • Ballarini, F., Moncada, D., Martinez, M., Alen, N., Viola, H.: Behavioral tagging is a general mechanism of long-term memory formation. Proc. Natl. Acad. Sci. U. S. A. 106(34), 14599–604 (2009)

    Google Scholar 

  • Bethus, I., Tse, D., Morris, R.: Dopamine and memory: Modulation of the persistence of memory for novel hippocampal nmda receptor-dependent paired associates. J. Neurosci. 30(5), 1610–1618 (2010)

    Google Scholar 

  • Borgkvist, A., Malmlof, T., Feltmann, K., Lindskog, M., Schilstrom, B.: Dopamine in the hippocampus is cleared by the norepinephrine transporter. Int. J. Neuropsychopharmacol. 1–10 (2011)

    Google Scholar 

  • Bromberg-Martin, E., Matsumoto, M., Hikosaka, O.: Distinct tonic and phasic anticipatory activity in lateral habenula and dopamine neurons. Neuron 67(1), 144–155 (2010a)

    Google Scholar 

  • Bromberg-Martin, E., Matsumoto, M., Hikosaka, O.: Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron 68(5), 815–834 (2010b)

    Google Scholar 

  • Bromberg-Martin, E., Matsumoto, M., Nakahara, H., Hikosaka, O.: Multiple timescales of memory in lateral habenula and dopamine neurons. Neuron 67(3), 499–510 (2010c)

    Google Scholar 

  • Brown, M., Henny, P., Bolam, J., Magill, P.: Activity of neurochemically heterogeneous dopaminergic neurons in the substantia nigra during spontaneous and driven changes in brain state. J. Neurosci. 29(9), 2915–2925 (2009)

    Google Scholar 

  • Bunzeck, N., Doeller, C., Fuentemilla, L., Dolan, R., Duzel, E.: Reward motivation accelerates the onset of neural novelty signals in humans to 85 milliseconds. Curr. Biol. 19(15), 1294–1300 (2009)

    Google Scholar 

  • Bunzeck, N., Duzel, E.: Absolute coding of stimulus novelty in the human substantia nigra/vta. Neuron 51(3), 369–379 (2006)

    Google Scholar 

  • Bunzeck, N., Schutze, H., Stallforth, S., Kaufmann, J., Duzel, S., Heinze, H., Duzel, E.: Mesolimbic novelty processing in older adults. Cereb. Cortex 17(12), 2940–2948 (2007)

    Google Scholar 

  • Cheng, S., Frank, L.: New experiences enhance coordinated neural activity in the hippocampus. Neuron 57(2), 303–313 (2008)

    Google Scholar 

  • Coulter, C., Happe, H., Bergman, D., Murrin, L.C.: Localization and quantification of the dopamine transporter: Comparison of [3h]win 35,428 and [125i]rti-55. Brain Res. 690(2), 217–224 (1995)

    Google Scholar 

  • Cragg, S., Nicholson, C., Kume-Kick, J., Tao, L., Rice, M.: Dopamine-mediated volume transmission in midbrain is regulated by distinct extracellular geometry and uptake. J. Neurophysiol. 85(4), 1761–1771 (2001)

    Google Scholar 

  • Csicsvari, J., O’Neill, J., Allen, K., Senior, T.: Place-selective firing contributes to the reverse-order reactivation of ca1 pyramidal cells during sharp waves in open-field exploration. Eur. J. Neurosci. 26(3), 704–716 (2007)

    Google Scholar 

  • Curet, O., Dennis, T., Scatton, B.: The formation of deaminated metabolites of dopamine in the locus coeruleus depends upon noradrenergic neuronal activity. Brain Res. 335(2), 297–301 (1985)

    Google Scholar 

  • Deadwyler, S., Hampson, R.: Differential but complementary mnemonic functions of the hippocampus and subiculum. Neuron 42(3), 465–476 (2004)

    Google Scholar 

  • Deutch, A., Goldstein, M., Roth, R.: Activation of the locus coeruleus induced by selective stimulation of the ventral tegmental area. Brain Res. 363(2), 307–314 (1986)

    Google Scholar 

  • Devoto, P., Flore, G., Pani, L., Gessa, G.: Evidence for co-release of noradrenaline and dopamine from noradrenergic neurons in the cerebral cortex. Mol. Psychiatry 6(6), 657–664 (2001)

    Google Scholar 

  • Devoto, P., Flore, G., Saba, P., Fa, M., Gessa, G.: Co-release of noradrenaline and dopamine in the cerebral cortex elicited by single train and repeated train stimulation of the locus coeruleus. BMC Neurosci. 6(31) (2005)

    Google Scholar 

  • Duzel, E., Bunzeck, N., Guitart-Masip, M., Duzel, S.: Novelty-related motivation of anticipation and exploration by dopamine (nomad): Implications for healthy aging. Neurosci. Biobehav. Rev. 34(5), 660–669 (2010)

    Google Scholar 

  • Duzel, E., Guitart-Masip, M., Weiskopf, N., Kanowski, M.: The fMRI Book, chapter Midbrain fMRI: Applications, Limitations and Challenges (2012, in revision)

    Google Scholar 

  • Fenker, D., Frey, J., Schuetze, H., Heipertz, D., Heinze, H., Duzel, E.: Novel scenes improve recollection and recall of words. J. Cogn. Neurosci. 20(7), 1250–1265 (2008)

    Google Scholar 

  • Frey, U., Matthies, H., Reymann, K.: The effect of dopaminergic d1 receptor blockade during tetanization on the expression of long-term potentiation in the rat ca1 region in vitro. Neurosci. Lett. 129(1), 111–114 (1991)

    Google Scholar 

  • Frey, U., Morris, R.: Synaptic tagging: Implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci. 21(5), 181–188 (1998)

    Google Scholar 

  • Frey, U., Schroeder, H., Matthies, H.: Dopaminergic antagonists prevent long-term maintenance of posttetanic ltp in the ca1 region of rat hippocampal slices. Brain Res. 522(1), 69–75 (1990)

    Google Scholar 

  • Fuxe, K., Hokfelt, T., Johansson, O., Jonsson, G., Lidbrink, P., Ljungdahl, A.: The origin of the dopamine nerve terminals in limbic and frontal cortex. evidence for meso-cortico dopamine neurons. Brain Res. 82(2), 349–355 (1974)

    Google Scholar 

  • Fyhn, M., Molden, S., Hollup, S., Moser, M., Moser, E.: Hippocampal neurons responding to first-time dislocation of a target object. Neuron 35(3), 555–566 (2002)

    Google Scholar 

  • Gasbarri, A., Campana, E., Pacitti, C., Hajdu, F., Tombol, T.: Organization of the projections from the ventral tegmental area of tsai to the hippocampal formation in the rat. J. Hirnforsch. 32(4), 429–437 (1991)

    Google Scholar 

  • Gasbarri, A., M.G., P., Campana, E., Pacitti, C.: Anterograde and retrograde tracing of projections from the ventral tegmental area to the hippocampal formation in the rat. Brain Res. Bull. 33(4), 445–452 (1994a)

    Google Scholar 

  • Gasbarri, A., Packard, M., Sulli, A., Pacitti, C., Innocenzi, R., Perciavalle, V.: The projections of the retrorubral field a8 to the hippocampal formation in the rat. Exp. Brain Res. 112(2), 244–252 (1996)

    Google Scholar 

  • Gasbarri, A., Sulli, A., Packard, M.: The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog. Neuropsychopharmacol. Biol. Psychiatry 21(1), 1–22 (1997)

    Google Scholar 

  • Gasbarri, A., Verney, C., Innocenzi, R., Campana, E., Pacitti, C.: Mesolimbic dopaminergic neurons innervating the hippocampal formation in the rat: A combined retrograde tracing and immunohistochemical study. Brain Res. 668(1–2), 71–79 (1994b)

    Google Scholar 

  • Geffard, M., Buijs, R., Seguela, P., Pool, C., Le Moal, M.: First demonstration of highly specific and sensitive antibodies against dopamine. Brain Res. 294(1), 161–165 (1984a)

    Google Scholar 

  • Geffard, M., Kah, O., Onteniente, B., Seguela, P., Le Moal, M., Delaage, M.: Antibodies to dopamine: Radioimmunological study of specificity in relation to immunocytochemistry. J. Neurochem. 42(6), 1593–1599 (1984b)

    Google Scholar 

  • Geffard, M., Seguela, P., Heinrich-Rock, A.: Antisera against catecholamines: Specificity studies and physicochemical data for anti-dopamine and anti-p-tyramine antibodies. Mol. Immunol. 21(6), 515–522 (1984c)

    Google Scholar 

  • Giese, K., Fedorov, N., Filipkowski, R., Silva, A.: Autophosphorylation at thr286 of the alpha calcium-calmodulin kinase ii in ltp and learning. Science 279(5352), 870–873 (1998)

    Google Scholar 

  • Goldman-Rakic, P., Leranth, C., Williams, S., Mons, N., Geffard, M.: Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. Proc. Natl. Acad. Sci. U. S. A. 86(22), 9015–9019 (1989)

    Google Scholar 

  • Guitart-Masip, M., Bunzeck, N., Stephan, K., Dolan, R., Duzel, E.: Contextual novelty changes reward representations in the striatum. J. Neurosci. 30(5), 1721–1726 (2010)

    Google Scholar 

  • Guitart-Masip, M., Fuentemilla, L., Bach, D., Huys, Q., Dayan, P., Dolan, R., Duzel, E.: Action dominates valence in anticipatory representations in the human striatum and dopaminergic midbrain. J. Neurosci. 31(21), 7867–7875 (2011)

    Google Scholar 

  • Hokfelt, T., Fuxe, K., Johansson, O., Ljungdahl, A.: Pharmaco-histochemical evidence of the existence of dopamine nerve terminals in the limbic cortex. Eur. J. Pharmacol. 25(1), 108–112 (1974a)

    Google Scholar 

  • Hokfelt, T., Ljungdahl, A., Fuxe, K., Johansson, O.: Dopamine nerve terminals in the rat limbic cortex: Aspects of the dopamine hypothesis of schizophrenia. Science 184(133), 177–179 (1974b)

    Google Scholar 

  • Huang, Y., Kandel, E.: D1/d5 receptor agonists induce a protein synthesis-dependent late potentiation in the ca1 region of the hippocampus. Proc. Natl. Acad. Sci. U. S. A. 92(7), 2446–2450 (1995)

    Google Scholar 

  • Ishikawa, K., Ott, T., McGaugh, J.: Evidence for dopamine as a transmitter in dorsal hippocampus. Brain Res. 232(1), 222–226 (1982)

    Google Scholar 

  • Kakade, S., Dayan, P.: Dopamine: Generalization and bonuses. Neural Netw. 15(4–6), 549–559 (2002)

    Google Scholar 

  • Karlsson, M., Frank, L.: Network dynamics underlying the formation of sparse, informative representations in the hippocampus. J. Neurosci. 28(52), 14271–14281 (2008)

    Google Scholar 

  • Krebs, R., Heipertz, D., Schuetze, H., Duzel, E.: Novelty increases the mesolimbic functional connectivity of the substantia nigra/ventral tegmental area (sn/vta) during reward anticipation: Evidence from high-resolution fmri. NeuroImage 58(2), 647–655 (2011)

    Google Scholar 

  • Krebs, R., Schott, B., Duzel, E.: Personality traits are differentially associated with patterns of reward and novelty processing in the human substantia nigra/ventral tegmental area. Biol. Psychiatry 65(2), 103–110 (2009)

    Google Scholar 

  • Kwon, O., Paredes, D., Gonzalez, C., Neddens, J., Hernandez, L., Vullhorst, D., Buonanno, A.: Neuregulin-1 regulates ltp at ca1 hippocampal synapses through activation of dopamine d4 receptors. Proc. Natl. Acad. Sci. U. S. A. 105(40), 15587–1592 (2008)

    Google Scholar 

  • Legault, M., Wise, R.: Novelty-evoked elevations of nucleus accumbens dopamine: Dependence on impulse flow from the ventral subiculum and glutamatergic neurotransmission in the ventral tegmental area. Eur. J. Neurosci. 13(4), 819–828 (2001)

    Google Scholar 

  • Lemon, N., Manahan-Vaughan, D.: Dopamine d1/d5 receptors gate the acquisition of novel information through hippocampal long-term potentiation and long-term depression. J. Neurosci. 26(29), 7723–7729 (2006)

    Google Scholar 

  • Li, S., Cullen, W., Anwyl, R., Rowan, M.: Dopamine-dependent facilitation of ltp induction in hippocampal ca1 by exposure to spatial novelty. Nat. Neurosci. 6(5), 526–531 (2003)

    Google Scholar 

  • Lisman, J., Grace, A.: The hippocampal-vta loop: Controlling the entry of information into long-term memory. Neuron 46(5), 703–713 (2005)

    Google Scholar 

  • Lisman, J., Grace, A., Duzel, E.: A neohebbian framework for episodic memory; role of dopamine-dependent late ltp. Trends Neurosci. 34(10), 536–547 (2011)

    Google Scholar 

  • Ljungberg, T., Apicella, P., Schultz, W.: Responses of monkey dopamine neurons during learning of behavioral reactions. J. Neurophysiol. 67(1), 145–163 (1992)

    Google Scholar 

  • Luo, A., Tahsili-Fahadan, P., Wise, R., Lupica, C., Aston-Jones, G.: Linking context with reward: A functional circuit from hippocampal ca3 to ventral tegmental area. Science 333(6040), 353–357 (2011)

    Google Scholar 

  • Martig, A., Mizumori, S.: Ventral tegmental area and substantia nigra neural correlates of spatial learning. Learn. Mem. 18(4), 260–271 (2011)

    Google Scholar 

  • Mirolli, M., Baldassarre, G.: Functions and mechanisms of intrinsic motivations: The knowledge versus competence distinction. In: Baldassarre, G., Mirolli, M. (eds.) Intrinsically Motivated Learning in Natural and Artificial Systems, pp. 49–72. Springer, Berlin (2012)

    Google Scholar 

  • Navakkode, S., Sajikumar, S., Frey, J.: Synergistic requirements for the induction of dopaminergic d1/d5-receptor-mediated ltp in hippocampal slices of rat ca1 in vitro. Neuropharmacology 52(7), 1547–1554 (2007)

    Google Scholar 

  • Nehmzow, U., Gatsoulis, Y., Kerr, E., Condell, J., Siddique, N.H., McGinnity, M.T.: Novelty detection as an intrinsic motivation for cumulative learning robots. In: Baldassarre, G., Mirolli, M. (eds.) Intrinsically Motivated Learning in Natural and Artificial Systems, pp. 185–207. Springer, Berlin (2012)

    Google Scholar 

  • Neugebauer, F., Korz, V., Frey, J.: Modulation of extracellular monoamine transmitter concentrations in the hippocampus after weak and strong tetanization of the perforant path in freely moving rats. Brain Res. 1273, 29–38 (2009)

    Google Scholar 

  • Nitz, D., McNaughton, B.: Differential modulation of ca1 and dentate gyrus interneurons during exploration of novel environments. J. Neurophysiol. 91(2), 863–872 (2004)

    Google Scholar 

  • Oades, R., Halliday, G.: Ventral tegmental (a10) system: Neurobiology. 1. anatomy and connectivity. Brain Res. 434(2), 117–165 (1987)

    Google Scholar 

  • Onteniente, B., Geffard, M., Calas, A.: Ultrastructural immunocytochemical study of the dopaminergic innervation of the rat lateral septum with anti-dopamine antibodies. Neuroscience 13(2), 385–393 (1984)

    Google Scholar 

  • Otmakhova, N., Lisman, J.: D1/d5 dopamine receptor activation increases the magnitude of early long-term potentiation at ca1 hippocampal synapses. J. Neurosci. 16(23), 7478–7486 (1996)

    Google Scholar 

  • Pacholczyk, T., Blakely, R., Amara, S.: Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature 350(6316), 350–354 (1991)

    Google Scholar 

  • Quintin, L., Hilaire, G., Pujol, J.: Variations in 3,4-dihydroxyphenylacetic acid concentration are correlated to single cell firing changes in the rat locus coeruleus. Neuroscience 18(4), 889–899 (1986)

    Google Scholar 

  • Redgrave, P., Gurney, K.: The short-latency dopamine signal: A role in discovering novel actions? Nat. Rev. Neurosci. 7(12), 967–975 (2006)

    Google Scholar 

  • Redondo, R., Morris, R.: Making memories last: The synaptic tagging and capture hypothesis. Nat. Rev. Neurosci. 12(1), 17–30 (2011)

    Google Scholar 

  • Rossato, J., Bevilaqua, L., Izquierdo, I., Medina, J., Cammarota, M.: Dopamine controls persistence of long-term memory storage. Science 325(5943), 1017–1020 (2009)

    Google Scholar 

  • Sawaguchi, T., Goldman-Rakic, P.: The role of d1-dopamine receptor in working memory: Local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J. Neurophysiol. 71(2), 515–528 (1994)

    Google Scholar 

  • Scatton, B., Dennis, T., Curet, O.: Increase in dopamine and dopac levels in noradrenergic terminals after electrical stimulation of the ascending noradrenergic pathways. Brain Res. 298(1), 193–196 (1984)

    Google Scholar 

  • Scatton, B., Javoy-Agid, F., Rouquier, L., Dubois, B., Agid, Y.: Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in parkinson’s disease. Brain Res. 275(2), 321–328 (1983)

    Google Scholar 

  • Scatton, B., Rouquier, L., Javoy-Agid, F., Agid, Y.: Dopamine deficiency in the cerebral cortex in parkinson disease. Neurology 32(9), 1039–1040 (1982)

    Google Scholar 

  • Scatton, B., Simon, H., Le Moal, M., Bischoff, S.: Origin of dopaminergic innervation of the rat hippocampal formation. Neurosci. Lett. 18(2), 125–131 (1980)

    Google Scholar 

  • Schott, B., Seidenbecher, C., Fenker, D., Lauer, C., Bunzeck, N., Bernstein, H., Tischmeyer, W., Gundelfinger, E., Heinze, H., Duzel, E.: The dopaminergic midbrain participates in human episodic memory formation: Evidence from genetic imaging. J. Neurosci. 26(5), 1407–1417 (2006)

    Google Scholar 

  • Schroeter, S., Apparsundaram, S., Wiley, R., Miner, L., Sesack, S., Blakely, R.: Immunolocalization of the cocaine- and antidepressant-sensitive l-norepinephrine transporter. J. Comp. Neurol. 420(2), 211–232 (2000)

    Google Scholar 

  • Schultz, W.: Behavioral dopamine signals. Trends Neurosci. 30(5), 203–210 (2007a)

    Google Scholar 

  • Schultz, W.: Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30, 259–288 (2007b)

    Google Scholar 

  • Schultz, W., Apicella, P., Ljungberg, T.: Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J. Neurosci. 13(3), 900–913 (1993)

    Google Scholar 

  • Schwab, M., Javoy-Agid, F., Agid, Y.: Labeled wheat germ agglutinin (wga) as a new, highly sensitive retrograde tracer in the rat brain hippocampal system. Brain Res. 152(1), 145–150 (1978)

    Google Scholar 

  • Shohamy, D., Wagner, A.: Integrating memories in the human brain: Hippocampal-midbrain encoding of overlapping events. Neuron 60(2), 378–389 (2008)

    Google Scholar 

  • Simon, H., Le Moal, M., Calas, A.: Efferents and afferents of the ventral tegmental-a10 region studied after local injection of [3h]leucine and horseradish peroxidase. Brain Res. 178(1), 17–40 (1979)

    Google Scholar 

  • Smith, C.C, Greene, R.W.: CNS dopamine transmission mediated by noradrenergic innervation. J. Neurosci. 32(18), 6072–6080 (2012)

    Google Scholar 

  • Sountsov, P., Santucci, D.M., Lisman, J.: A biologically plausible transform for visual recognition that is invariant to translation, scale, and rotation. Front. Comput. Neurosci. 5(53) (2011)

    Google Scholar 

  • Swanson, L.: The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull. 9(1–6), 321–53 (1982)

    Google Scholar 

  • Swanson, L., Hartman, B.: The central adrenergic system. an immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-beta-hydroxylase as a marker. J. Comp. Neurol. 163(4), 467–505 (1975)

    Google Scholar 

  • Swanson, L., Kohler, C., Bjorklund, A.: The limbic region. I: The septohippocampal system. In: Bjorklund A, Hokfelt T.S.L. (eds.) Integrated Systems of the CNS, pp. 125–269. Elsevier, Amsterdam (1987)

    Google Scholar 

  • Swant, J., Wagner, J.: Dopamine transporter blockade increases ltp in the ca1 region of the rat hippocampus via activation of the d3 dopamine receptor. Learn. Mem. 13(2), 161–167 (2006)

    Google Scholar 

  • Van Eden, C., Hoorneman, E., Buijs, R., Matthijssen, M., Geffard, M., Uylings, H.: Immunocytochemical localization of dopamine in the prefrontal cortex of the rat at the light and electron microscopical level. Neuroscience 22(3), 849–862 (1987)

    Google Scholar 

  • VanElzakker, M., Fevurly, R., Breindel, T., Spencer, R.: Environmental novelty is associated with a selective increase in fos expression in the output elements of the hippocampal formation and the perirhinal cortex. Learn. Mem. 15(12), 899–908 (2008)

    Google Scholar 

  • Verney, C., Baulac, M., Berger, B., Alvarez, C., Vigny, A., Helle, K.: Morphological evidence for a dopaminergic terminal field in the hippocampal formation of young and adult rat. Neuroscience 14(4), 1039–1052 (1985)

    Google Scholar 

  • Wang, S., Redondo, R., Morris, R.: Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory. Proc. Natl. Acad. Sci. U. S. A. 107, 19537–19542 (2010)

    Google Scholar 

  • Whitlock, J., Heynen, A., Shuler, M., Bear, M.: Learning induces long-term potentiation in the hippocampus. Science 313(5790), 1093–1097 (2006)

    Google Scholar 

  • Wittmann, B., Bunzeck, N., Dolan, R., Duzel, E.: Anticipation of novelty recruits reward system and hippocampus while promoting recollection. Neuroimage 38(1), 194–202 (2007)

    Google Scholar 

  • Wittmann, B., Schott, B., Guderian, S., Frey, J., Heinze, H., Duzel, E.: Reward-related fmri activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation. Neuron 45(3), 459–467 (2005)

    Google Scholar 

  • Wolosin, S., Liang, J., Zeithamova, D., Schmandt, N., Preston, A.: Reward modulation of hippocampal subregions during motivated associative encoding. Soc. Neurosci. (2009)

    Google Scholar 

  • Wyss, J., Swanson, L., Cowan, W.: A study of subcortical afferents to the hippocampal formation in the rat. Neuroscience 4(4), 463–476 (1979)

    Google Scholar 

  • Zoli, M., Torri, C., Ferrari, R., Jansson, A., Zini, I., Fuxe, K., Agnati, L.: The emergence of the volume transmission concept. Brain Res. Brain Res. Rev. 26(2–3), 136–47 (1998)

    Google Scholar 

Download references

Acknowledgements

John Lisman gratefully acknowledges the support of NIH Grant N.2 P50 MH060450. Emrah Duzel has been supported by the Wellcome Trust (Project Grant to ED) and the DFG (KFO 163, SFB 776 TP A7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Lisman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Otmakhova, N., Duzel, E., Deutch, A.Y., Lisman, J. (2013). The Hippocampal-VTA Loop: The Role of Novelty and Motivation in Controlling the Entry of Information into Long-Term Memory. In: Baldassarre, G., Mirolli, M. (eds) Intrinsically Motivated Learning in Natural and Artificial Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32375-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32375-1_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32374-4

  • Online ISBN: 978-3-642-32375-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics