Skip to main content

Human-Like Combat Behaviour via Multiobjective Neuroevolution

  • Chapter
  • First Online:
Believable Bots

Abstract

Although evolution has proven to be a powerful search method for discovering effective behaviour for sequential decision-making problems, it seems unlikely that evolving for raw performance could result in behaviour that is distinctly human-like. This chapter demonstrates how human-like behaviour can be evolved by restricting a bot’s actions in a way consistent with human limitations and predilections. This approach evolves good behaviour, but assures that it is consistent with how humans behave. The approach is demonstrated in the \({UT{\char 94}2}\) bot for the commercial first-person shooter videogame Unreal Tournament 2004. \({UT{\char 94}2}\) ’s human-like qualities allowed it to take second place in BotPrize 2010, a competition to develop human-like bots for Unreal Tournament 2004. This chapter analyzes \({UT{\char 94}2}\) , explains how it achieved its current level of humanness, and discusses insights gained from the competition results that should lead to improved human-like bot performance in future competitions and in videogames in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.botprize.org/2010.html

References

  1. Adobbati, R., Marshall, A.N., Scholer, A., Tejada, S.: Gamebots: a 3D virtual world test-bed for multi-agent research. In: Proceedings of the Second International Workshop on Infrastructure for Agents, MAS, and Scalable MAS (2001)

    Google Scholar 

  2. Bäck, T., Hoffmeister, F., Schwefel, H.P.: A survey of evolution strategies. In: Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 2–9 (1991)

    Google Scholar 

  3. Brooks, R.A.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(10), 14–23 (1986)

    Google Scholar 

  4. Bryson, J.J.: Intelligence by design: principles of modularity and coordination for engineering complex adaptive agents. Ph.D. thesis, Massachusetts Institute of Technology (2001)

    Google Scholar 

  5. Butz, M., Lonneker, T.: Optimized sensory-motor couplings plus strategy extensions for the TORCS car racing challenge. In: Computational Intelligence and Games, pp. 317–324 (2009)

    Google Scholar 

  6. Darwin, C.: On the Origin of Species by Means of Natural Selection or the Preservation of Favored Races in the Struggle for Life. Murray, London (1859)

    Google Scholar 

  7. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. PPSN VI, pp. 849–858 (2000)

    Google Scholar 

  8. Fogel, D.B., Atmar, J.W.: Comparing genetic operators with gaussian mutationsin simulated evolutionary processes using linear systems. Biol. Cybern. 63(2), 111–114 (1990)

    Article  Google Scholar 

  9. Gemrot, J., Kadlec, R., Bida, M., Burkert, O., Pibil, R., Havlicek, J., Zemcak, L., Simlovic, J., Vansa, R., Stolba, M., Plch, T.C.B.: Pogamut 3 can assist developers in building AI (not only) for their videogame agents. Agents for Games and Simulations, LNCS, vol. 5920. Springer, Heidelberg (2009)

    Google Scholar 

  10. Gomez, F., Miikkulainen, R.: Active guidance for a finless rocket using neuroevolution. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 2084–2095. Morgan Kaufmann, San Francisco (2003). http://nn.cs.utexas.edu/keyword?gomez:gecco03

  11. Haykin, S.: Neural Networks, A Comprehensive Foundation. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  12. Hingston, P.: A Turing Test for computer game bots. IEEE Trans. Comput. Intell. AI Games 1(3), 169–186 (2009)

    Article  Google Scholar 

  13. Hingston, P.: A new design for a Turing Test for bots. In: Computational Intelligence and Games (2010)

    Google Scholar 

  14. Isla, D.: Managing complexity in the Halo 2 AI system. In: Proceedings of the Game Developers Conference, San Francisco, CA (2005). http://www.gamasutra.com/gdc2005/features/20050311/isla-01.shtml

  15. Knowles, J., Thiele, L., Zitzler, E.: A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers. TIK Report 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (2006)

    Google Scholar 

  16. Kohl, N., Miikkulainen, R.: Evolving neural networks for strategic decision-making problems. Neural Networks 22, 326–337 (Special issue on Goal-Directed Neural Systems) (2009)

    Google Scholar 

  17. Mouret, J.B., Doncieux, S.: Using behavioral exploration objectives to solve deceptive problems in neuro-evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 627–634. ACM (2009). doi:10.1145/1569901.1569988

  18. Schrum, J., Miikkulainen, R.: Evolving agent behavior in multiobjective domains using fitness-based shaping. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 439–446. Portland, Oregon (2010). http://nn.cs.utexas.edu/?schrum:gecco10

  19. Schrum, J., Miikkulainen, R.: Evolving multi-modal behavior in NPCs. In: Computational Intelligence and Games, pp. 325–332 (2009). http://nn.cs.utexas.edu/?schrum:cig09

  20. Stanley, K.O., Bryant, B.D., Karpov, I., Miikkulainen, R.: Real-time evolution of neural networks in the NERO video game. In: Proceedings of the Twenty-First National Conference on Artificial Intelligence (2006). http://nn.cs.utexas.edu/keyword?stanley:aaai06

  21. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10, 99–127 (2002). http://nn.cs.utexas.edu/keyword?stanley:ec02

    Google Scholar 

  22. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998). http://citeseer.ist.psu.edu/sutton98reinforcement.html

  23. Turing, A.M.: Computing machinery and intelligence. Mind 59(236), 433–460 (1950)

    Article  MathSciNet  Google Scholar 

  24. Togelius, J.: Evolution of a subsumption architecture neurocontroller. J. Intell. Fuzzy Syst. 15, 15–20 (2004)

    Google Scholar 

  25. van Hoorn, N., Togelius, J., Schmidhuber, J.: Hierarchical controller learning in a first-person shooter. In: Computational Intelligence and Games, pp. 294–301 (2009)

    Google Scholar 

  26. Waibel, M., Keller, L., Floreano, D.: Genetic team composition and level of selection in the evolution of multi-agent systems. Evol. Comput. 13(3), 648–660 (2009)

    Article  Google Scholar 

  27. Whiteson, S., Stone, P., Stanley, K.O., Miikkulainen, R., Kohl, N.: Automatic feature selection in neuroevolution. In: Proceedings of the Genetic and Evolutionary Computation Conference (2005). http://nn.cs.utexas.edu/keyword?whiteson:gecco05

  28. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: on the design of pareto-compliant indicators via weighted integration. In: Conference on Evolutionary Multi-Criterion Optimization (EMO 2007), vol. 4403, pp. 862–876 (2007)

    Google Scholar 

  29. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Conference on Parallel Problem Solving from Nature, pp. 292–304 (1998)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Niels van Hoorn for the use of his source code in getting started evolving bots in UT2004. They would also like to thank Christopher Tanguay and Peter Djeu for volunteering to critique and evaluate versions of \({UT{\char 94}2}\) . This research was supported in part by the NSF under grants DBI-0939454 and IIS-0915038 and by the Texas Higher Education Coordinating Board grant 003658-0036-2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Schrum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schrum, J., Karpov, I.V., Miikkulainen, R. (2013). Human-Like Combat Behaviour via Multiobjective Neuroevolution. In: Hingston, P. (eds) Believable Bots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32323-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32323-2_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32322-5

  • Online ISBN: 978-3-642-32323-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics