Skip to main content

Part of the book series: Algorithms and Computation in Mathematics ((AACIM,volume 5))

  • 8408 Accesses

Abstract

We have already encountered the notion of a tree in Chap. 1 and obtained some basic results, including the number of trees on n vertices. In the present chapter, we will study this important class of graphs in considerably more detail. After some further characterizations of trees, we shall study another way of determining the number of trees on n vertices which actually applies more generally: it allows one to compute the number of spanning trees in any given connected graph. Following these theoretical results, the major part of the chapter will be devoted to a network optimization problem, namely to finding a spanning tree for which the sum of all edge lengths is minimal. This problem has many applications; for example, the vertices might represent cities we want to connect to a system supplying electricity; then the edges represent the possible connections and the length of an edge states how much it would cost to build that connection. Other possible interpretations are tasks like establishing traffic connections (for cars, trains or planes) or designing a network for TV broadcasts. We shall present an interesting characterization of minimal spanning trees and use this criterion to establish the most important algorithms for determining such a tree, namely those of Prim, Kruskal, and Boruvka. Following this, we discuss several further applications (e.g., the bottleneck problem) and spanning trees with additional restrictions. We will also consider Steiner trees (these are trees where it is allowed to add some new vertices) and arborescences (directed trees).

I think that I shall never see

A poem lovely as a tree.

Joyce Kilmer

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We will treat this result in Chap. 6. Actually we shall use a different proof which is not based on Theorem 4.2.5.

  2. 2.

    Beware: some authors use the term Steiner tree for what we call a minimal Steiner tree. As an exercise, the reader might try to settle the geometric Steiner tree problem for the vertices of a unit square: here one gets two Steiner points, and the minimal Steiner tree has length \(1+\sqrt{3}\). See [Cox61], Sect. 1.8, or [CouRo41], p. 392.

  3. 3.

    Here is an exercise for those who remember their high school geometry. Prove that the Fermat point of a triangle in which no angle exceeds 120 is the unique point from which the three sides each subtend a 120 angle. See, for example, [Cox61], Sect. 1.8.

  4. 4.

    As some of the arithmetic operations concerned are exponentiations, this estimate of the complexity might be considered a little optimistic.

References

  1. Abu-Sbeih, M.Z.: On the number of spanning trees of K n and K m,n . Discrete Math. 84, 205–207 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Data Structures and Algorithms. Addison Wesley, Reading (1983)

    MATH  Google Scholar 

  3. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and Applications. Prentice Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  4. Anderson, S.S., Harary, F.: Trees and unicyclic graphs. Math. Teach. 60, 345–348 (1967)

    Google Scholar 

  5. Arora, S., Karakostas, G.: A 2+ε approximation algorithm for the k-MST problem. Math. Program. 107, 491–504 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berman, P., Ramaiyer, V.: Improved approximations for the Steiner tree problem. J. Algorithms 17, 381–408 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. North Holland, Amsterdam (1976)

    MATH  Google Scholar 

  8. Bonsma, P., Zickfeld, F.: A 3/2-approximation algorithm for finding spanning trees with many leaves in cubic graphs. SIAM J. Discrete Math. 25, 1652–1666 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boruvka, O.: O jistém problému minimálním. Acta Soc. Sci. Nat. Morav. 3, 37–58 (1926)

    Google Scholar 

  10. Boruvka, O.: Príspevek k resení otázky ekonomické stavby elektrovodních sítí. Elektrotech. Obz. 15, 153–154 (1926)

    Google Scholar 

  11. Camerini, P.M., Fratta, L., Maffioli, F.: A note on finding optimum branchings. Networks 9, 309–312 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Camerini, P.M., Maffioli, F., Martello, S., Toth, P.: Most and least uniform spanning trees. Discrete Appl. Math. 15, 181–197 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Campbell, D.M., Radford, D.: Tree isomorphism algorithms: speed versus clarity. Math. Mag. 64, 252–261 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chandrasekaran, R., Tamir, A.: Polynomial testing of the query ‘Is a bc d’ with application to finding a minimal cost reliability ratio spanning tree. Discrete Appl. Math. 9, 117–123 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chandrasekaran, R., Aneja, Y.P., Nair, K.P.K.: Minimal cost reliability ratio spanning tree. Ann. Discrete Math. 11, 53–60 (1981)

    MathSciNet  MATH  Google Scholar 

  16. Cheriton, D., Tarjan, R.E.: Finding minimum spanning trees. SIAM J. Comput. 5, 724–742 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  17. Christofides, N.: Graph Theory: An Algorithmic Approach. Academic Press, New York (1975)

    MATH  Google Scholar 

  18. Chu, Y.J., Liu, T.H.: On the shortest arborescence of a directed graph. Sci. Sin. 14, 1396–1400 (1965)

    MATH  Google Scholar 

  19. Cieslik, D.: Steiner Minimal Trees. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  20. Cieslik, D.: The Steiner Ratio. Kluwer, Dordrecht (2001)

    MATH  Google Scholar 

  21. Colbourn, C.J., Day, R.P.J., Nel, L.D.: Unranking and ranking spanning trees of a graph. J. Algorithms 10, 271–286 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  23. Courant, R., Robbins, H.: What is Mathematics? Oxford University Press, New York (1941)

    Google Scholar 

  24. Coxeter, H.M.S.: Introduction to Geometry. Wiley, New York (1961)

    MATH  Google Scholar 

  25. de Bruijn, N.G.: A combinatorial problem. Indag. Math. 8, 461–467 (1946)

    Google Scholar 

  26. de Bruijn, N.G., van Aardenne-Ehrenfest, T.: Circuits and trees in oriented linear graphs. Simon Stevin 28, 203–217 (1951)

    MathSciNet  MATH  Google Scholar 

  27. Dixon, B., Rauch, M., Tarjan, R.E.: Verification and sensitivity analysis of minimum spanning trees in linear time. SIAM J. Comput. 21, 1184–1192 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Du, D.-Z., Hwang, F.: An approach for proving lower bounds: solution of Gilbert-Pollak’s conjecture on Steiner ratio. In: Proc. 31st Annual Symp. on Foundations of Computer Science, Los Alamitos, CA, pp. 76–85. IEEE Computer Society, Los Alamitos (1990)

    Chapter  Google Scholar 

  29. Du, D.-Z., Hwang, F.: The Steiner ratio conjecture of Gilbert and Pollak is true. Proc. Natl. Acad. Sci. USA 87, 9464–9466 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Du, D.-Z., Zhang, Y.: On better heuristics for Steiner minimum trees. Math. Program. 57, 193–202 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Du, D.-Z., Smith, J.M., Rubinstein, J.H.: Advances in Steiner Trees. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  32. Edmonds, J.: Optimum branchings. J. Res. Natl. Bur. Stand. B 71, 233–240 (1967)

    MathSciNet  MATH  Google Scholar 

  33. Eppstein, D.: Offline algorithms for dynamic minimum spanning tree problems. J. Algorithms 17, 237–250 (1994)

    Article  MathSciNet  Google Scholar 

  34. Fiedler, M., Sedlacek, J.: O W-basich orientovanych grafu. Čas. Pěst. Mat. 83, 214–225 (1958)

    MathSciNet  MATH  Google Scholar 

  35. Fischetti, M., Hamacher, H.W., Jørnsten, K.O., Maffioli, F.: Weighted k-cardinality trees: complexity and polyhedral structure. Networks 24, 11–21 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Frederickson, G.N.: Data structures for on-line updating of minimum spanning trees, with applications. SIAM J. Comput. 14, 781–798 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses on improved network optimization algorithms. J. Assoc. Comput. Mach. 34, 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  38. Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum spanning trees and shortest paths. J. Comput. Syst. Sci. 48, 533–551 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gabow, H.N., Galil, Z., Spencer, T., Tarjan, R.E.: Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica 6, 109–122 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  40. Galil, Z., Schieber, B.: On funding most uniform spanning trees. Discrete Appl. Math. 20, 173–175 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  41. Garey, M.R., Johnson, D.S.: The complexity of near-optimal graph coloring. J. Assoc. Comput. Mach. 23, 43–49 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  42. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  43. Garey, M.R., Graham, R.L., Johnson, D.S.: The complexity of computing Steiner minimal trees. SIAM J. Appl. Math. 32, 835–859 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  44. Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. Appl. Math. 16, 1–29 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  45. Gondran, M., Minoux, N.: Graphs and Algorithms. Wiley, New York (1984)

    MATH  Google Scholar 

  46. Graham, R.L., Hell, P.: On the history of the minimum spanning tree problem. Ann. Hist. Comput. 7, 43–57 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hadley, G.: Linear Algebra. Addison-Wesley, Reading (1961)

    MATH  Google Scholar 

  48. Hamacher, H.W., Ruhe, G.: On spanning tree problems with multiple objectives. Ann. Oper. Res. 52, 209–230 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  49. Harary, F.: Graph Theory. Addison Wesley, Reading (1969)

    Google Scholar 

  50. Ho, J.-M., Lee, D.T., Chang, C.-H., Wong, C.K.: Minimum diameter spanning trees and related problems. SIAM J. Comput. 20, 987–997 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  51. Hu, T.C.: The maximum capacity route problem. Oper. Res. 9, 898–900 (1961)

    Article  Google Scholar 

  52. Hu, T.C.: Optimum communication spanning trees. SIAM J. Comput. 3, 188–195 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  53. Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problem. North Holland, Amsterdam (1992)

    MATH  Google Scholar 

  54. Jarník, V.: O jistém problému minimálním. Acta Soc. Sci. Nat. Morav. 6, 57–63 (1930)

    Google Scholar 

  55. Johnson, D.B.: Priority queues with update and minimum spanning trees. Inf. Process. Lett. 4, 53–57 (1975)

    Article  MATH  Google Scholar 

  56. Johnson, D.S., Lenstra, J.K., Rinnooy Kan, A.H.G.: The complexity of the network design problem. Networks 8, 279–285 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  57. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  58. Kirchhoff, G.: Über die Auflösungen der Gleichungen, auf die man bei der Untersuchung der Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)

    Google Scholar 

  59. Kleitman, D.J., West, D.B.: Spanning trees with many leaves. SIAM J. Discrete Math. 4, 99–106 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  60. Knuth, D.E.: Oriented subtrees of an arc digraph. J. Comb. Theory 3, 309–314 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  61. Korte, B., Prömel, H.J., Steger, A.: Steiner trees in VLSI-Layout. In: Korte, B., Lovász, L., Prömel, H.J., Schrijver, A. (eds.) Paths, Flows and VLSI-layout, pp. 185–214. Springer, Berlin (1990)

    Google Scholar 

  62. Kravitz, D.: Two comments on minimum spanning trees. Bull. Inst. Comb. Appl. 49, 7–10 (2007)

    MathSciNet  MATH  Google Scholar 

  63. Kruskal, J.B.: On the shortest spanning subtree of a graph and the travelling salesman problem. Proc. Am. Math. Soc. 7, 48–50 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  64. Lawler, E.L.: Combinatorial Optimization: Networks and Matriods. Holt, Rinehart and Winston, New York (1976)

    Google Scholar 

  65. Lemke, P.: The Maximum-Leaf Spanning Tree Problem in Cubic Graphs is NP-Complete. IMA Publication, vol. 428. University of Minnesota, Minneapolis (1988)

    Google Scholar 

  66. Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley, New York (1990)

    MATH  Google Scholar 

  67. Maculan, N.: The Steiner problem in graphs. Ann. Discrete Math. 31, 185–212 (1987)

    MathSciNet  Google Scholar 

  68. Martin, A.: Packen Von Steinerbäumen: Polyedrische Studien und Anwendung. Dissertation, Technische Universität Berlin (1992)

    Google Scholar 

  69. Matsui, T.: The minimum spanning tree problem on a planar graph. Discrete Appl. Math. 58, 91–94 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  70. Mehlhorn, K., Sanders, P.: Algorithms and Data Structures. The Basic Toolbox. Springer, Berlin (2008)

    MATH  Google Scholar 

  71. Otter, R.: The number of trees. Ann. Math. 49, 583–599 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  72. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36, 1389–1401 (1957)

    Google Scholar 

  73. Prömel, H.-J., Steger, A.: The Steiner Tree Problem. Vieweg, Braunschweig (2002)

    Book  MATH  Google Scholar 

  74. Tarjan, R.E.: Finding optimum branchings. Networks 7, 25–35 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  75. Trietsch, D., Hwang, F.: An improved algorithm for Steiner trees. SIAM J. Appl. Math. 50, 244–264 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  76. Tutte, W.T.: The dissection of equilateral triangles into equilateral triangles. Proc. Camb. Philos. Soc. 44, 203–217 (1948)

    Article  MathSciNet  Google Scholar 

  77. van Lint, J.H.: Combinatorial Theory Seminar Eindhoven University of Technology. Springer, Berlin (1974)

    MATH  Google Scholar 

  78. Voß, S.: Steiner’s problem in graphs: heuristic methods. Discrete Appl. Math. 40, 45–72 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  79. Yao, A.C.: An O(|E|loglog|V|) algorithm for finding minimum spanning trees. Inf. Process. Lett. 4, 21–23 (1975)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jungnickel, D. (2013). Spanning Trees. In: Graphs, Networks and Algorithms. Algorithms and Computation in Mathematics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32278-5_4

Download citation

Publish with us

Policies and ethics