Skip to main content

Part of the book series: SpringerBriefs in Earth System Sciences ((BRIEFSEARTHSYST))

  • 1524 Accesses

Abstract

Lophelia pertusa is the most common reef framework-forming cold-water coral species. The complex reef structure is known to support a high diversity of benthic species. Mapping L. Pertusa distribution is essential for resource management, but challenging given the remoteness of their habitats. In this study, maximum entropy modelling (Maxent) was used to predict the potential distribution of L. pertusa at the Traena Reef on the Norwegian margin, with multiscale (30, 50 and 90 m) terrain variables being used in the model run. Maxent successfully predicted the potential distribution of L. pertusa at the Traena Reef. The suitable habitat was predicted to occur on the easterly tips of extended topographic features. Jackknife tests showed the terrain variables slope, aspect and plan curvature (at scale 50 m) were the most useful terrain parameters for habitat prediction of L. pertusa when used in isolation. The live L. pertusa occurrence at the Traena Reef is to a large degree influenced by local scale terrain features, with elevated areas of extant reef structures facing into prevalent current flows being most suitable for ongoing L. pertusa growth and reef development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Buhl-Mortensen L, Vanreusel A, Gooday AJ, Levin LA, Priede IG, Buhl-Mortensen P, Gheerardyn H, King NJ, Raes M (2010) Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar Ecol 31(1):21–50. doi:10.1111/j.1439-0485.2010.00359.x

    Article  Google Scholar 

  • Dolan MFJ, Grehan AJ, Guinan JC, Brown C (2008) Modelling the local distribution of cold-water corals in relation to bathymetric variables: adding spatial context to deep-sea video data. Deep-Sea Res PT I 55(11):1564–1579

    Article  Google Scholar 

  • Fosså JH, Lindberg B, Christensen O, Lundälv T, Svellingen I, Mortensen PB, Alvsvåg J (2005) Mapping of Lophelia reefs in Norway: experiences and survey methods. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Erlangen Earth conference series. Springer, Berlin, pp 359–391

    Google Scholar 

  • Guinan J, Brown C, Dolan MFJ, Grehan AJ (2009) Ecological niche modelling of the distribution of cold-water coral habitat using underwater remote sensing data. Ecol Inform 4(2):83–92

    Article  Google Scholar 

  • Mortensen PB, Buhl-Mortensen L (2004) Distribution of deep-water gorgonian corals in relation to benthic habitat features in the northeast channel (Atlantic Canada). Mar Biol 144(6):1223–1238. doi:10.1007/s00227-003-1280-8

    Article  Google Scholar 

  • Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2):161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259

    Article  Google Scholar 

  • Purser A, Larsson AI, Thomsen L, van Oevelen D (2010) The influence of flow velocity and food concentration on Lophelia pertusa (Scleractinia) zooplankton capture rates. J Exp Mar Biol Ecol 395(1–2):55–62

    Article  Google Scholar 

  • Roberts JM, Wheeler A, Freiwald A, Cairns S (2009) Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tittensor DP, Baco AR, Brewin PE, Clark MR, Consalvey M, Hall-Spencer J, Rowden AA, Schlacher T, Stocks KI, Rogers AD (2009) Predicting global habitat suitability for stony corals on seamounts. J Biogeogr 36(6):1111–1128

    Article  Google Scholar 

  • Wilson MFJ, O’Connell B, Brown C, Guinan JC, Grehan AJ (2007) Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar Geod 30(1):3–35

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerrit Lohmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Lohmann, G., Grosfeld, K., Wolf-Gladrow, D., Wegner, A., Notholt, J., Unnithan, V. (2013). Ecosystems and Climate Change. In: Lohmann, G., Grosfeld, K., Wolf-Gladrow, D., Unnithan, V., Notholt, J., Wegner, A. (eds) Earth System Science: Bridging the Gaps between Disciplines. SpringerBriefs in Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32235-8_6

Download citation

Publish with us

Policies and ethics